带有闵科夫斯基曲率算子的一维扰动格尔方问题的分岔曲线

IF 2.4 2区 数学 Q1 MATHEMATICS
Shao-Yuan Huang , Shin-Hwa Wang
{"title":"带有闵科夫斯基曲率算子的一维扰动格尔方问题的分岔曲线","authors":"Shao-Yuan Huang ,&nbsp;Shin-Hwa Wang","doi":"10.1016/j.jde.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the shapes of bifurcation curves of positive solutions for the one-dimensional perturbed Gelfand problem with the Minkowski-curvature operator<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><msup><mrow><mo>(</mo><mfrac><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><msqrt><mrow><mn>1</mn><mo>−</mo><msup><mrow><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mi>λ</mi><mi>exp</mi><mo>⁡</mo><mrow><mo>(</mo><mfrac><mrow><mi>a</mi><mi>u</mi></mrow><mrow><mi>a</mi><mo>+</mo><mi>u</mi></mrow></mfrac><mo>)</mo></mrow><mo>,</mo><mrow><mtext></mtext><mspace></mspace></mrow><mo>−</mo><mi>L</mi><mo>&lt;</mo><mi>x</mi><mo>&lt;</mo><mi>L</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mo>−</mo><mi>L</mi><mo>)</mo><mo>=</mo><mi>u</mi><mo>(</mo><mi>L</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span>where <span><math><mi>λ</mi><mo>&gt;</mo><mn>0</mn></math></span> is a bifurcation parameter and <span><math><mi>a</mi><mo>,</mo><mi>L</mi><mo>&gt;</mo><mn>0</mn></math></span> are evolution parameters. We determine the shapes of the bifurcation curves for different positive values <em>a</em> and <em>L</em>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 700-726"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation curves for the one-dimensional perturbed Gelfand problem with the Minkowski-curvature operator\",\"authors\":\"Shao-Yuan Huang ,&nbsp;Shin-Hwa Wang\",\"doi\":\"10.1016/j.jde.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the shapes of bifurcation curves of positive solutions for the one-dimensional perturbed Gelfand problem with the Minkowski-curvature operator<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><msup><mrow><mo>(</mo><mfrac><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><msqrt><mrow><mn>1</mn><mo>−</mo><msup><mrow><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mi>λ</mi><mi>exp</mi><mo>⁡</mo><mrow><mo>(</mo><mfrac><mrow><mi>a</mi><mi>u</mi></mrow><mrow><mi>a</mi><mo>+</mo><mi>u</mi></mrow></mfrac><mo>)</mo></mrow><mo>,</mo><mrow><mtext></mtext><mspace></mspace></mrow><mo>−</mo><mi>L</mi><mo>&lt;</mo><mi>x</mi><mo>&lt;</mo><mi>L</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mo>−</mo><mi>L</mi><mo>)</mo><mo>=</mo><mi>u</mi><mo>(</mo><mi>L</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span>where <span><math><mi>λ</mi><mo>&gt;</mo><mn>0</mn></math></span> is a bifurcation parameter and <span><math><mi>a</mi><mo>,</mo><mi>L</mi><mo>&gt;</mo><mn>0</mn></math></span> are evolution parameters. We determine the shapes of the bifurcation curves for different positive values <em>a</em> and <em>L</em>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 700-726\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006521\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006521","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有闵科夫斯基曲率算子{-(u′(x)1-(u′(x))2)′=λexp(aua+u),-L<;x<L,u(-L)=u(L)=0,其中 λ>0 为分岔参数,a,L>0 为演化参数。我们确定了不同正值 a 和 L 的分岔曲线形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation curves for the one-dimensional perturbed Gelfand problem with the Minkowski-curvature operator
In this paper, we study the shapes of bifurcation curves of positive solutions for the one-dimensional perturbed Gelfand problem with the Minkowski-curvature operator{(u(x)1(u(x))2)=λexp(aua+u),L<x<L,u(L)=u(L)=0,where λ>0 is a bifurcation parameter and a,L>0 are evolution parameters. We determine the shapes of the bifurcation curves for different positive values a and L.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信