通过覆盖关系和锥形条件确定搅拌器的特性

IF 2.4 2区 数学 Q1 MATHEMATICS
Maciej J. Capiński , Bernd Krauskopf , Hinke M. Osinga , Piotr Zgliczyński
{"title":"通过覆盖关系和锥形条件确定搅拌器的特性","authors":"Maciej J. Capiński ,&nbsp;Bernd Krauskopf ,&nbsp;Hinke M. Osinga ,&nbsp;Piotr Zgliczyński","doi":"10.1016/j.jde.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>We present a characterisation of a blender based on the topological alignment of certain sets in phase space in combination with cone conditions. Importantly, the required conditions can be verified by checking properties of a single iterate of the diffeomorphism, which is achieved by finding finite series of sets that form suitable sequences of alignments. This characterisation is applicable in arbitrary dimension. Moreover, the approach naturally extends to establishing <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-persistent heterodimensional cycles. Our setup is flexible and allows for a rigorous, computer-assisted validation based on interval arithmetic.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterising blenders via covering relations and cone conditions\",\"authors\":\"Maciej J. Capiński ,&nbsp;Bernd Krauskopf ,&nbsp;Hinke M. Osinga ,&nbsp;Piotr Zgliczyński\",\"doi\":\"10.1016/j.jde.2024.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a characterisation of a blender based on the topological alignment of certain sets in phase space in combination with cone conditions. Importantly, the required conditions can be verified by checking properties of a single iterate of the diffeomorphism, which is achieved by finding finite series of sets that form suitable sequences of alignments. This characterisation is applicable in arbitrary dimension. Moreover, the approach naturally extends to establishing <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-persistent heterodimensional cycles. Our setup is flexible and allows for a rigorous, computer-assisted validation based on interval arithmetic.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006545\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006545","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于相空间中某些集合的拓扑排列并结合锥条件的搅拌器特性描述。重要的是,所需的条件可以通过检查差分变形的单次迭代的属性来验证,而这是通过找到形成合适排列序列的有限集合系列来实现的。这种特性适用于任意维度。此外,这种方法还能自然扩展到建立 C1 持久的异维循环。我们的设置非常灵活,可以基于区间运算进行严格的计算机辅助验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterising blenders via covering relations and cone conditions
We present a characterisation of a blender based on the topological alignment of certain sets in phase space in combination with cone conditions. Importantly, the required conditions can be verified by checking properties of a single iterate of the diffeomorphism, which is achieved by finding finite series of sets that form suitable sequences of alignments. This characterisation is applicable in arbitrary dimension. Moreover, the approach naturally extends to establishing C1-persistent heterodimensional cycles. Our setup is flexible and allows for a rigorous, computer-assisted validation based on interval arithmetic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信