Fourier-Lebesgue 空间中广义 Korteweg-de Vries 方程的收敛问题

IF 2.4 2区 数学 Q1 MATHEMATICS
Qiaoqiao Zhang , Wei Yan , Jinqiao Duan , Meihua Yang
{"title":"Fourier-Lebesgue 空间中广义 Korteweg-de Vries 方程的收敛问题","authors":"Qiaoqiao Zhang ,&nbsp;Wei Yan ,&nbsp;Jinqiao Duan ,&nbsp;Meihua Yang","doi":"10.1016/j.jde.2024.10.007","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the pointwise convergence problem of the generalized Korteweg-de Vries (gKdV) equation with data in the Fourier-Lebesgue space. Firstly, for the Airy equation, we show the almost everywhere pointwise convergence with data in <span><math><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>s</mi><mo>,</mo><mfrac><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>,</mo><mo>(</mo><mi>s</mi><mo>≥</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>,</mo><mn>5</mn><mo>≤</mo><mi>α</mi><mo>&lt;</mo><mo>∞</mo><mo>)</mo></math></span>, furthermore, we show that the maximal function estimate related to the Airy equation can fail with data in <span><math><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>s</mi><mo>,</mo><mfrac><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>(</mo><mi>s</mi><mo>&lt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo></math></span>. Then, for the gKdV equation, we establish the pointwise convergence results with the data in <span><math><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>(</mo><mn>5</mn><mo>≤</mo><mi>α</mi><mo>&lt;</mo><mfrac><mrow><mn>23</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></math></span>, in particular, we establish the pointwise convergence results with small data in <span><math><msup><mrow><mover><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, which implies that the pointwise convergence of generalized KdV equation is closely related to the pointwise convergence of linear KdV equation in the Fourier-Lebesgue spaces.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 614-641"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The convergence problem of the generalized Korteweg-de Vries equation in Fourier-Lebesgue space\",\"authors\":\"Qiaoqiao Zhang ,&nbsp;Wei Yan ,&nbsp;Jinqiao Duan ,&nbsp;Meihua Yang\",\"doi\":\"10.1016/j.jde.2024.10.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the pointwise convergence problem of the generalized Korteweg-de Vries (gKdV) equation with data in the Fourier-Lebesgue space. Firstly, for the Airy equation, we show the almost everywhere pointwise convergence with data in <span><math><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>s</mi><mo>,</mo><mfrac><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>,</mo><mo>(</mo><mi>s</mi><mo>≥</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>,</mo><mn>5</mn><mo>≤</mo><mi>α</mi><mo>&lt;</mo><mo>∞</mo><mo>)</mo></math></span>, furthermore, we show that the maximal function estimate related to the Airy equation can fail with data in <span><math><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>s</mi><mo>,</mo><mfrac><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>(</mo><mi>s</mi><mo>&lt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo></math></span>. Then, for the gKdV equation, we establish the pointwise convergence results with the data in <span><math><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>(</mo><mn>5</mn><mo>≤</mo><mi>α</mi><mo>&lt;</mo><mfrac><mrow><mn>23</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></math></span>, in particular, we establish the pointwise convergence results with small data in <span><math><msup><mrow><mover><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, which implies that the pointwise convergence of generalized KdV equation is closely related to the pointwise convergence of linear KdV equation in the Fourier-Lebesgue spaces.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 614-641\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006570\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006570","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了广义 Korteweg-de Vries(gKdV)方程在傅里叶-勒贝格空间中数据的点收敛问题。首先,对于 Airy 方程,我们证明了数据在 Hˆs,α-12(R),(s≥1α-1,5≤α<∞)中几乎无处不点收敛,而且,我们还证明了与 Airy 方程相关的最大函数估计在数据在 Hˆs,α-12(R)(s<1α-1)中可能失效。然后,对于gKdV方程,我们在Hˆ1α-1,α-12(R)(5≤α<233)中建立了数据的点式收敛结果,特别是在H˙ˆ14,2(R)中建立了小数据的点式收敛结果,这意味着广义KdV方程的点式收敛与线性KdV方程在傅里叶-勒贝格空间中的点式收敛密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The convergence problem of the generalized Korteweg-de Vries equation in Fourier-Lebesgue space
In this paper, we investigate the pointwise convergence problem of the generalized Korteweg-de Vries (gKdV) equation with data in the Fourier-Lebesgue space. Firstly, for the Airy equation, we show the almost everywhere pointwise convergence with data in Hˆs,α12(R),(s1α1,5α<), furthermore, we show that the maximal function estimate related to the Airy equation can fail with data in Hˆs,α12(R)(s<1α1). Then, for the gKdV equation, we establish the pointwise convergence results with the data in Hˆ1α1,α12(R)(5α<233), in particular, we establish the pointwise convergence results with small data in H˙ˆ14,2(R), which implies that the pointwise convergence of generalized KdV equation is closely related to the pointwise convergence of linear KdV equation in the Fourier-Lebesgue spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信