贝塞尔函数导数零点的单调性

IF 0.9 3区 数学 Q2 MATHEMATICS
Dimitar K. Dimitrov, Yen Chi Lun
{"title":"贝塞尔函数导数零点的单调性","authors":"Dimitar K. Dimitrov,&nbsp;Yen Chi Lun","doi":"10.1016/j.jat.2024.106102","DOIUrl":null,"url":null,"abstract":"<div><div>Recently Baricz et al., 2018 and Baricz and Singh 2018 gave two different proofs of the fact that the zeros of the <span><math><mi>n</mi></math></span>th derivative of the Bessel function of the first kind <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>ν</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are all real when <span><math><mrow><mi>ν</mi><mo>&gt;</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>. We provide a third alternative proof. The authors of Baricz et al., 2018 conjectured that, for every <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, the positive zeros of <span><math><mrow><msubsup><mrow><mi>J</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are increasing functions of the parameter <span><math><mi>ν</mi></math></span>, for <span><math><mrow><mi>ν</mi><mo>∈</mo><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>. We provide two apparently distinct proofs of the conjecture.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotonicity of zeros of derivatives of Bessel functions\",\"authors\":\"Dimitar K. Dimitrov,&nbsp;Yen Chi Lun\",\"doi\":\"10.1016/j.jat.2024.106102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently Baricz et al., 2018 and Baricz and Singh 2018 gave two different proofs of the fact that the zeros of the <span><math><mi>n</mi></math></span>th derivative of the Bessel function of the first kind <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>ν</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are all real when <span><math><mrow><mi>ν</mi><mo>&gt;</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>. We provide a third alternative proof. The authors of Baricz et al., 2018 conjectured that, for every <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, the positive zeros of <span><math><mrow><msubsup><mrow><mi>J</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are increasing functions of the parameter <span><math><mi>ν</mi></math></span>, for <span><math><mrow><mi>ν</mi><mo>∈</mo><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>. We provide two apparently distinct proofs of the conjecture.</div></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002190452400090X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002190452400090X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

最近,Baricz 等人 2018 年以及 Baricz 和 Singh 2018 年给出了两个不同的证明,证明了当 ν>n-1 时,第一类贝塞尔函数的 n 次导数 Jν(x) 的零点都是实数。我们提供了第三个替代证明。Baricz 等人,2018》的作者猜想,对于每 n∈N,Jν(n)(x) 的正零点是参数 ν 的递增函数,为 ν∈(n-1,∞)。我们提供了两个看似不同的猜想证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monotonicity of zeros of derivatives of Bessel functions
Recently Baricz et al., 2018 and Baricz and Singh 2018 gave two different proofs of the fact that the zeros of the nth derivative of the Bessel function of the first kind Jν(x) are all real when ν>n1. We provide a third alternative proof. The authors of Baricz et al., 2018 conjectured that, for every nN, the positive zeros of Jν(n)(x) are increasing functions of the parameter ν, for ν(n1,). We provide two apparently distinct proofs of the conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信