Kieran Rivers , Bradley Young , Yuanbo T. Tang , Bo-Shiuan Li , Angus J. Wilkinson , David E.J. Armstrong , Junliang Liu
{"title":"Ti-V-Cr-Nb-Ta 和 Al-Ti-V-Cr-Ta 难熔高熵合金的氧化行为:铌和铝替代的影响","authors":"Kieran Rivers , Bradley Young , Yuanbo T. Tang , Bo-Shiuan Li , Angus J. Wilkinson , David E.J. Armstrong , Junliang Liu","doi":"10.1016/j.matdes.2024.113370","DOIUrl":null,"url":null,"abstract":"<div><div>Refractory high entropy alloys (RHEAs) are candidate materials for nuclear and other high-temperature applications, due to their high-temperature strength, good irradiation resistance, and high melting temperatures. However, a significant issue with current RHEAs is that those exhibiting good mechanical properties tend to show poor oxidation resistance, and vice versa. In this paper, the oxidation kinetics of four RHEAs (20Ti-20V-20Cr-20Nb-20Ta, 25Ti-25V-5Cr-20Nb-25Ta, 20Al-20Ti-20V-20Cr-20Ta, and 14Al-24Ti-24V-14Cr-24Ta alloys) were investigated in an air atmosphere at 1000 °C. As-prepared and oxidised samples were characterised by a combination of state-of-the-art microscopy techniques. By replacing Nb with Al, the two Al-containing alloys were observed to form a less porous oxide microstructure, showing significant improvement in their oxidation resistance. As a result of oxygen/nitrogen ingress during oxidation and associated phase-segregation at high temperatures, the hardness of the underlying metal matrix of the RHEAs increased by approximately 5 GPa.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"246 ","pages":"Article 113370"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidation behaviour of Ti-V-Cr-Nb-Ta and Al-Ti-V-Cr-Ta refractory high entropy alloys: Effects of Nb and Al substitutions\",\"authors\":\"Kieran Rivers , Bradley Young , Yuanbo T. Tang , Bo-Shiuan Li , Angus J. Wilkinson , David E.J. Armstrong , Junliang Liu\",\"doi\":\"10.1016/j.matdes.2024.113370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Refractory high entropy alloys (RHEAs) are candidate materials for nuclear and other high-temperature applications, due to their high-temperature strength, good irradiation resistance, and high melting temperatures. However, a significant issue with current RHEAs is that those exhibiting good mechanical properties tend to show poor oxidation resistance, and vice versa. In this paper, the oxidation kinetics of four RHEAs (20Ti-20V-20Cr-20Nb-20Ta, 25Ti-25V-5Cr-20Nb-25Ta, 20Al-20Ti-20V-20Cr-20Ta, and 14Al-24Ti-24V-14Cr-24Ta alloys) were investigated in an air atmosphere at 1000 °C. As-prepared and oxidised samples were characterised by a combination of state-of-the-art microscopy techniques. By replacing Nb with Al, the two Al-containing alloys were observed to form a less porous oxide microstructure, showing significant improvement in their oxidation resistance. As a result of oxygen/nitrogen ingress during oxidation and associated phase-segregation at high temperatures, the hardness of the underlying metal matrix of the RHEAs increased by approximately 5 GPa.</div></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":\"246 \",\"pages\":\"Article 113370\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127524007457\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524007457","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Oxidation behaviour of Ti-V-Cr-Nb-Ta and Al-Ti-V-Cr-Ta refractory high entropy alloys: Effects of Nb and Al substitutions
Refractory high entropy alloys (RHEAs) are candidate materials for nuclear and other high-temperature applications, due to their high-temperature strength, good irradiation resistance, and high melting temperatures. However, a significant issue with current RHEAs is that those exhibiting good mechanical properties tend to show poor oxidation resistance, and vice versa. In this paper, the oxidation kinetics of four RHEAs (20Ti-20V-20Cr-20Nb-20Ta, 25Ti-25V-5Cr-20Nb-25Ta, 20Al-20Ti-20V-20Cr-20Ta, and 14Al-24Ti-24V-14Cr-24Ta alloys) were investigated in an air atmosphere at 1000 °C. As-prepared and oxidised samples were characterised by a combination of state-of-the-art microscopy techniques. By replacing Nb with Al, the two Al-containing alloys were observed to form a less porous oxide microstructure, showing significant improvement in their oxidation resistance. As a result of oxygen/nitrogen ingress during oxidation and associated phase-segregation at high temperatures, the hardness of the underlying metal matrix of the RHEAs increased by approximately 5 GPa.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.