Jinbao Guo , Yixin Zhao , Linfeng He , Xiaodong Guo , Hua Shen , Sen Gao
{"title":"不同垂直温度梯度下非饱和砂岩的自发浸润:中子射线照相实验和动态模型","authors":"Jinbao Guo , Yixin Zhao , Linfeng He , Xiaodong Guo , Hua Shen , Sen Gao","doi":"10.1016/j.advwatres.2024.104832","DOIUrl":null,"url":null,"abstract":"<div><div>To elucidate the imbibition behavior of water in complex temperature and stress environments, spontaneous imbibition experiments were conducted on unsaturated matrix sandstones at different vertical temperature gradients by neutron radiography technology. Additionally, corresponding dynamic models of water imbibition in porous media were established. The research results reveal the phased characteristics of sandstone spontaneous imbibition and the influence of vertical temperature gradient on the evolution of wetting front. Specifically, the initial development speed of the wetting front increases with an increase in the vertical temperature gradient, indicating a direct relationship. However, the growth rate of the wetting front gradually slows down with increasing time, eventually reaching a saturated state. Model validation demonstrates that the traditional Washburn's law is still valid in isothermal conditions without temperature gradient (G=0). Further analysis indicates that the imbibition rate has a direct correlation with linear thermal expansion coefficient (α) and viscosity temperature coefficient (β) across various vertical temperature gradients, and an inverse correlation with surface tension temperature coefficient (γ). Furthermore, when the values of α, β, and γ fall below 0.001, their impact on the imbibition rate becomes negligible. The sensitivity of the imbibition rate to parameters γ, β, and α decreases in that order, with γ being the most sensitive, followed by β, and α being the least sensitive. Moreover, the relative importance of α, β, and γ dictates their specific influence on the imbibition rate, and a synergistic effect exists among these parameters, which collectively influence the water absorption behavior of sandstone.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"193 ","pages":"Article 104832"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spontaneous imbibition of unsaturated sandstone under different vertical temperature gradients: neutron radiography experiments and dynamic models\",\"authors\":\"Jinbao Guo , Yixin Zhao , Linfeng He , Xiaodong Guo , Hua Shen , Sen Gao\",\"doi\":\"10.1016/j.advwatres.2024.104832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To elucidate the imbibition behavior of water in complex temperature and stress environments, spontaneous imbibition experiments were conducted on unsaturated matrix sandstones at different vertical temperature gradients by neutron radiography technology. Additionally, corresponding dynamic models of water imbibition in porous media were established. The research results reveal the phased characteristics of sandstone spontaneous imbibition and the influence of vertical temperature gradient on the evolution of wetting front. Specifically, the initial development speed of the wetting front increases with an increase in the vertical temperature gradient, indicating a direct relationship. However, the growth rate of the wetting front gradually slows down with increasing time, eventually reaching a saturated state. Model validation demonstrates that the traditional Washburn's law is still valid in isothermal conditions without temperature gradient (G=0). Further analysis indicates that the imbibition rate has a direct correlation with linear thermal expansion coefficient (α) and viscosity temperature coefficient (β) across various vertical temperature gradients, and an inverse correlation with surface tension temperature coefficient (γ). Furthermore, when the values of α, β, and γ fall below 0.001, their impact on the imbibition rate becomes negligible. The sensitivity of the imbibition rate to parameters γ, β, and α decreases in that order, with γ being the most sensitive, followed by β, and α being the least sensitive. Moreover, the relative importance of α, β, and γ dictates their specific influence on the imbibition rate, and a synergistic effect exists among these parameters, which collectively influence the water absorption behavior of sandstone.</div></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":\"193 \",\"pages\":\"Article 104832\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0309170824002197\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170824002197","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Spontaneous imbibition of unsaturated sandstone under different vertical temperature gradients: neutron radiography experiments and dynamic models
To elucidate the imbibition behavior of water in complex temperature and stress environments, spontaneous imbibition experiments were conducted on unsaturated matrix sandstones at different vertical temperature gradients by neutron radiography technology. Additionally, corresponding dynamic models of water imbibition in porous media were established. The research results reveal the phased characteristics of sandstone spontaneous imbibition and the influence of vertical temperature gradient on the evolution of wetting front. Specifically, the initial development speed of the wetting front increases with an increase in the vertical temperature gradient, indicating a direct relationship. However, the growth rate of the wetting front gradually slows down with increasing time, eventually reaching a saturated state. Model validation demonstrates that the traditional Washburn's law is still valid in isothermal conditions without temperature gradient (G=0). Further analysis indicates that the imbibition rate has a direct correlation with linear thermal expansion coefficient (α) and viscosity temperature coefficient (β) across various vertical temperature gradients, and an inverse correlation with surface tension temperature coefficient (γ). Furthermore, when the values of α, β, and γ fall below 0.001, their impact on the imbibition rate becomes negligible. The sensitivity of the imbibition rate to parameters γ, β, and α decreases in that order, with γ being the most sensitive, followed by β, and α being the least sensitive. Moreover, the relative importance of α, β, and γ dictates their specific influence on the imbibition rate, and a synergistic effect exists among these parameters, which collectively influence the water absorption behavior of sandstone.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes