非线性中性延迟-反应-扩散方程的加权隐式-显式虚拟元素法的无条件误差分析

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Shanshan Peng , Yanping Chen
{"title":"非线性中性延迟-反应-扩散方程的加权隐式-显式虚拟元素法的无条件误差分析","authors":"Shanshan Peng ,&nbsp;Yanping Chen","doi":"10.1016/j.cnsns.2024.108384","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we develop a virtual element method in space for the nonlinear neutral delay-reaction–diffusion equation, while a weighted implicit-explicit scheme is utilized in time. The nonlinear term is adopted by using the Newton linearized method. The calculation efficiency is improved using an implicit scheme to analyze linear terms and an explicit scheme to deal with nonlinear terms. Then, the time–space error splitting technique and G-stability are creatively combined to rigorously analyze the unconditionally optimal convergence results of the numerical scheme without any restrictions on the mesh ratio. Finally, numerical examples on a set of polygonal meshes are provided to confirm the theoretical results. In particular, when the weighted parameter is taken <span><math><mrow><mi>θ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> (or <span><math><mrow><mi>θ</mi><mo>=</mo><mn>1</mn></mrow></math></span>), the method degenerates into the Crank–Nicolson (or second-order backward differential formula (BDF2)) scheme.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconditional error analysis of weighted implicit-explicit virtual element method for nonlinear neutral delay-reaction–diffusion equation\",\"authors\":\"Shanshan Peng ,&nbsp;Yanping Chen\",\"doi\":\"10.1016/j.cnsns.2024.108384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we develop a virtual element method in space for the nonlinear neutral delay-reaction–diffusion equation, while a weighted implicit-explicit scheme is utilized in time. The nonlinear term is adopted by using the Newton linearized method. The calculation efficiency is improved using an implicit scheme to analyze linear terms and an explicit scheme to deal with nonlinear terms. Then, the time–space error splitting technique and G-stability are creatively combined to rigorously analyze the unconditionally optimal convergence results of the numerical scheme without any restrictions on the mesh ratio. Finally, numerical examples on a set of polygonal meshes are provided to confirm the theoretical results. In particular, when the weighted parameter is taken <span><math><mrow><mi>θ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> (or <span><math><mrow><mi>θ</mi><mo>=</mo><mn>1</mn></mrow></math></span>), the method degenerates into the Crank–Nicolson (or second-order backward differential formula (BDF2)) scheme.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005690\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005690","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文针对非线性中性延迟-反应-扩散方程开发了一种空间虚拟元素方法,同时在时间上采用了加权隐式-显式方案。非线性项采用牛顿线性化方法。利用隐式方案分析线性项,利用显式方案处理非线性项,从而提高了计算效率。然后,创造性地将时空误差分割技术和 G 稳定性结合起来,严格分析了数值方案的无条件最优收敛结果,对网格比例没有任何限制。最后,提供了一组多边形网格的数值实例来证实理论结果。特别是当加权参数取θ=12(或θ=1)时,该方法退化为 Crank-Nicolson(或二阶后向微分公式(BDF2))方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unconditional error analysis of weighted implicit-explicit virtual element method for nonlinear neutral delay-reaction–diffusion equation
In this paper, we develop a virtual element method in space for the nonlinear neutral delay-reaction–diffusion equation, while a weighted implicit-explicit scheme is utilized in time. The nonlinear term is adopted by using the Newton linearized method. The calculation efficiency is improved using an implicit scheme to analyze linear terms and an explicit scheme to deal with nonlinear terms. Then, the time–space error splitting technique and G-stability are creatively combined to rigorously analyze the unconditionally optimal convergence results of the numerical scheme without any restrictions on the mesh ratio. Finally, numerical examples on a set of polygonal meshes are provided to confirm the theoretical results. In particular, when the weighted parameter is taken θ=12 (or θ=1), the method degenerates into the Crank–Nicolson (or second-order backward differential formula (BDF2)) scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信