用于三维线性弹性问题的无锁定虚拟元素方法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jianguo Huang, Wenxuan Wang
{"title":"用于三维线性弹性问题的无锁定虚拟元素方法","authors":"Jianguo Huang,&nbsp;Wenxuan Wang","doi":"10.1016/j.aml.2024.109333","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on proposing and analyzing a new locking-free lowest order virtual element method for the linear elasticity problem in three dimensions. A virtual element function on a polyhedron <span><math><mi>K</mi></math></span> is harmonic, while it is continuous piecewise linear corresponding to an auxiliary triangulation on the boundary <span><math><mrow><mi>∂</mi><mi>K</mi></mrow></math></span>. Such construction requires no further three-dimensional partition of <span><math><mi>K</mi></math></span>. Under some reasonable mesh assumptions, we derive the inverse inequality, the norm equivalence and the error estimate of the interpolation operator for the underlying virtual element. Using these results combined with a rigorous analysis, we establish a robust error estimate in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm for the proposed method. Finally, we perform numerical results to demonstrate theoretical findings.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109333"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A locking-free virtual element method for 3D linear elasticity problems\",\"authors\":\"Jianguo Huang,&nbsp;Wenxuan Wang\",\"doi\":\"10.1016/j.aml.2024.109333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on proposing and analyzing a new locking-free lowest order virtual element method for the linear elasticity problem in three dimensions. A virtual element function on a polyhedron <span><math><mi>K</mi></math></span> is harmonic, while it is continuous piecewise linear corresponding to an auxiliary triangulation on the boundary <span><math><mrow><mi>∂</mi><mi>K</mi></mrow></math></span>. Such construction requires no further three-dimensional partition of <span><math><mi>K</mi></math></span>. Under some reasonable mesh assumptions, we derive the inverse inequality, the norm equivalence and the error estimate of the interpolation operator for the underlying virtual element. Using these results combined with a rigorous analysis, we establish a robust error estimate in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm for the proposed method. Finally, we perform numerical results to demonstrate theoretical findings.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"160 \",\"pages\":\"Article 109333\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003537\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003537","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文主要针对三维线性弹性问题提出并分析了一种新的无锁定最低阶虚元方法。多面体 K 上的虚元函数是谐函数,而与边界 ∂K 上的辅助三角剖分相对应的虚元函数是连续的片断线性函数。在一些合理的网格假设下,我们推导出了底层虚元的逆不等式、规范等价性和插值算子的误差估计。利用这些结果并结合严格的分析,我们为所提出的方法建立了 H1 准则的稳健误差估计。最后,我们用数值结果来证明理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A locking-free virtual element method for 3D linear elasticity problems
This paper focuses on proposing and analyzing a new locking-free lowest order virtual element method for the linear elasticity problem in three dimensions. A virtual element function on a polyhedron K is harmonic, while it is continuous piecewise linear corresponding to an auxiliary triangulation on the boundary K. Such construction requires no further three-dimensional partition of K. Under some reasonable mesh assumptions, we derive the inverse inequality, the norm equivalence and the error estimate of the interpolation operator for the underlying virtual element. Using these results combined with a rigorous analysis, we establish a robust error estimate in H1 norm for the proposed method. Finally, we perform numerical results to demonstrate theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信