Thomas J. Joyce , Ghassene Ouenzerfi , Goksu Kandemir , Ian Trail , Valentin Massardier , Rayan Othmani , Andre Pierre Schroder , Thierry Granjon , Michel Hassler , Ana-Maria Trunfio-Sfarghiu
{"title":"超高分子量聚乙烯与热碳摩擦产生的磨损明显低于与钴铬摩擦产生的磨损","authors":"Thomas J. Joyce , Ghassene Ouenzerfi , Goksu Kandemir , Ian Trail , Valentin Massardier , Rayan Othmani , Andre Pierre Schroder , Thierry Granjon , Michel Hassler , Ana-Maria Trunfio-Sfarghiu","doi":"10.1016/j.jmbbm.2024.106768","DOIUrl":null,"url":null,"abstract":"<div><div>The history of joint replacement can be framed as a battle to reduce wear. Pyrocarbon has been shown to be a low wear material, but can low wear against an ultra high molecular weight polyethylene (UHMWPE) counterface be achieved? To investigate this research question, a 50-station, clinically validated wear screening machine was used. Half the stations tested UHMWPE pins against pyrocarbon discs, and half the stations tested UHMWPE pins against cobalt chromium (CoCr) discs. The test rig ran at 1Hz, the nominal contact stress was 2.07 MPa, and testing ran to 5 million cycles. A biomimetic lubricant was used, it was replaced every 500,000 cycles. At the end of testing, the UHMWPE pins rubbing against pyrocarbon discs had a statistically significant reduced wear, compared with the UHMWPE pins rubbing against CoCr discs (p ≤ 0.01). Analysis of the discs at the end of testing showed greater adherence of phospholipids on the pyrocarbon discs than the CoCr discs. In turn, it was also seen that far less UHMWPE was attached to the pyrocarbon discs than to the CoCr discs. Based on this evidence, it is suggested that pyrocarbon surfaces are associated with reduced adhesive wear of UHMWPE compared with CoCr surfaces. In addition, at the end of testing, the CoCr discs were found to be significantly rougher than the pyrocarbon discs. Therefore, pyrocarbon maintained a smoother surface than CoCr, likely meaning that abrasive wear of UHMWPE was reduced compared with CoCr.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106768"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significantly less wear of UHMWPE rubbing against pyrocarbon than against CoCr\",\"authors\":\"Thomas J. Joyce , Ghassene Ouenzerfi , Goksu Kandemir , Ian Trail , Valentin Massardier , Rayan Othmani , Andre Pierre Schroder , Thierry Granjon , Michel Hassler , Ana-Maria Trunfio-Sfarghiu\",\"doi\":\"10.1016/j.jmbbm.2024.106768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The history of joint replacement can be framed as a battle to reduce wear. Pyrocarbon has been shown to be a low wear material, but can low wear against an ultra high molecular weight polyethylene (UHMWPE) counterface be achieved? To investigate this research question, a 50-station, clinically validated wear screening machine was used. Half the stations tested UHMWPE pins against pyrocarbon discs, and half the stations tested UHMWPE pins against cobalt chromium (CoCr) discs. The test rig ran at 1Hz, the nominal contact stress was 2.07 MPa, and testing ran to 5 million cycles. A biomimetic lubricant was used, it was replaced every 500,000 cycles. At the end of testing, the UHMWPE pins rubbing against pyrocarbon discs had a statistically significant reduced wear, compared with the UHMWPE pins rubbing against CoCr discs (p ≤ 0.01). Analysis of the discs at the end of testing showed greater adherence of phospholipids on the pyrocarbon discs than the CoCr discs. In turn, it was also seen that far less UHMWPE was attached to the pyrocarbon discs than to the CoCr discs. Based on this evidence, it is suggested that pyrocarbon surfaces are associated with reduced adhesive wear of UHMWPE compared with CoCr surfaces. In addition, at the end of testing, the CoCr discs were found to be significantly rougher than the pyrocarbon discs. Therefore, pyrocarbon maintained a smoother surface than CoCr, likely meaning that abrasive wear of UHMWPE was reduced compared with CoCr.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"160 \",\"pages\":\"Article 106768\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616124004004\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124004004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Significantly less wear of UHMWPE rubbing against pyrocarbon than against CoCr
The history of joint replacement can be framed as a battle to reduce wear. Pyrocarbon has been shown to be a low wear material, but can low wear against an ultra high molecular weight polyethylene (UHMWPE) counterface be achieved? To investigate this research question, a 50-station, clinically validated wear screening machine was used. Half the stations tested UHMWPE pins against pyrocarbon discs, and half the stations tested UHMWPE pins against cobalt chromium (CoCr) discs. The test rig ran at 1Hz, the nominal contact stress was 2.07 MPa, and testing ran to 5 million cycles. A biomimetic lubricant was used, it was replaced every 500,000 cycles. At the end of testing, the UHMWPE pins rubbing against pyrocarbon discs had a statistically significant reduced wear, compared with the UHMWPE pins rubbing against CoCr discs (p ≤ 0.01). Analysis of the discs at the end of testing showed greater adherence of phospholipids on the pyrocarbon discs than the CoCr discs. In turn, it was also seen that far less UHMWPE was attached to the pyrocarbon discs than to the CoCr discs. Based on this evidence, it is suggested that pyrocarbon surfaces are associated with reduced adhesive wear of UHMWPE compared with CoCr surfaces. In addition, at the end of testing, the CoCr discs were found to be significantly rougher than the pyrocarbon discs. Therefore, pyrocarbon maintained a smoother surface than CoCr, likely meaning that abrasive wear of UHMWPE was reduced compared with CoCr.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.