{"title":"贪心卡彭波束成形器","authors":"Esa Ollila","doi":"10.1109/LSP.2024.3475351","DOIUrl":null,"url":null,"abstract":"We propose greedy Capon beamformer (GCB) for direction finding of narrow-band sources present in the array's viewing field. After defining the grid covering the location search space, the algorithm greedily builds the interference-plus-noise covariance matrix by identifying a high-power source on the grid using Capon's principle of maximizing the signal to interference plus noise ratio while enforcing unit gain towards the signal of interest. An estimate of the power of the detected source is derived by exploiting the unit power constraint, which subsequently allows to update the noise covariance matrix by simple rank-1 matrix addition composed of outerproduct of the selected steering matrix with itself scaled by the signal power estimate. Our numerical examples demonstrate effectiveness of the proposed GCB in direction finding where it performs favourably compared to the state-of-the-art algorithms under a broad variety of settings. Furthermore, GCB estimates of direction-of-arrivals (DOAs) are very fast to compute.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"2775-2779"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10706632","citationCount":"0","resultStr":"{\"title\":\"Greedy Capon Beamformer\",\"authors\":\"Esa Ollila\",\"doi\":\"10.1109/LSP.2024.3475351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose greedy Capon beamformer (GCB) for direction finding of narrow-band sources present in the array's viewing field. After defining the grid covering the location search space, the algorithm greedily builds the interference-plus-noise covariance matrix by identifying a high-power source on the grid using Capon's principle of maximizing the signal to interference plus noise ratio while enforcing unit gain towards the signal of interest. An estimate of the power of the detected source is derived by exploiting the unit power constraint, which subsequently allows to update the noise covariance matrix by simple rank-1 matrix addition composed of outerproduct of the selected steering matrix with itself scaled by the signal power estimate. Our numerical examples demonstrate effectiveness of the proposed GCB in direction finding where it performs favourably compared to the state-of-the-art algorithms under a broad variety of settings. Furthermore, GCB estimates of direction-of-arrivals (DOAs) are very fast to compute.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"31 \",\"pages\":\"2775-2779\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10706632\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10706632/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10706632/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
We propose greedy Capon beamformer (GCB) for direction finding of narrow-band sources present in the array's viewing field. After defining the grid covering the location search space, the algorithm greedily builds the interference-plus-noise covariance matrix by identifying a high-power source on the grid using Capon's principle of maximizing the signal to interference plus noise ratio while enforcing unit gain towards the signal of interest. An estimate of the power of the detected source is derived by exploiting the unit power constraint, which subsequently allows to update the noise covariance matrix by simple rank-1 matrix addition composed of outerproduct of the selected steering matrix with itself scaled by the signal power estimate. Our numerical examples demonstrate effectiveness of the proposed GCB in direction finding where it performs favourably compared to the state-of-the-art algorithms under a broad variety of settings. Furthermore, GCB estimates of direction-of-arrivals (DOAs) are very fast to compute.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.