Nan Ding, Wen Xu, Hailong Liu, Yuhan Jing, Zewen Wang, Yanan Ji, Jinlei Wu, Long Shao, Ge Zhu, Bin Dong
{"title":"通过集成量子切割发光聚光器实现高紫外至近红外-II 波段响应的宽带量子点异质结光电探测器","authors":"Nan Ding, Wen Xu, Hailong Liu, Yuhan Jing, Zewen Wang, Yanan Ji, Jinlei Wu, Long Shao, Ge Zhu, Bin Dong","doi":"10.1038/s41377-024-01604-0","DOIUrl":null,"url":null,"abstract":"<p>Low-cost, high-performance, and uncooled broadband photodetectors (PDs) have potential applications in optical communication etc., but it still remains a huge challenge to realize deep UV (DUV) to the second near-infrared (NIR-II) detection for a single broadband PD. Herein, a single PD affording broadband spectral response from 200 to 1700 nm is achieved with a vertical configuration based on quantum dots (QDs) heterojunction and quantum cutting luminescent concentrators (QC–LC). A broadband quantum dots heterojunction as absorption layer was designed by integrating CsPbI<sub>3</sub>:Ho<sup>3+</sup> perovskite quantum dots (PQDs) and PbS QDs to realize the spectral response from 400 to 1700 nm. The QC–LC by employing CsPbCl<sub>3</sub>:Cr<sup>3+</sup>, Ce<sup>3+</sup>, Yb<sup>3+</sup>, Er<sup>3+</sup> PQDs as luminescent conversion layer to collect and concentrate photon energy for boosting the DUV–UV (200–400 nm) photons response of PDs by waveguide effect. Such broadband PD displays good stability, and outstanding sensitivity with the detectivity of 3.19 × 10<sup>12</sup> Jones at 260 nm, 1.05 × 10<sup>13</sup> Jones at 460 nm and 2.23 × 10<sup>12</sup> Jones at 1550 nm, respectively. The findings provide a new strategy to construct broadband detector, offering more opportunities in future optoelectronic devices.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"2 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly DUV to NIR-II responsive broadband quantum dots heterojunction photodetectors by integrating quantum cutting luminescent concentrators\",\"authors\":\"Nan Ding, Wen Xu, Hailong Liu, Yuhan Jing, Zewen Wang, Yanan Ji, Jinlei Wu, Long Shao, Ge Zhu, Bin Dong\",\"doi\":\"10.1038/s41377-024-01604-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Low-cost, high-performance, and uncooled broadband photodetectors (PDs) have potential applications in optical communication etc., but it still remains a huge challenge to realize deep UV (DUV) to the second near-infrared (NIR-II) detection for a single broadband PD. Herein, a single PD affording broadband spectral response from 200 to 1700 nm is achieved with a vertical configuration based on quantum dots (QDs) heterojunction and quantum cutting luminescent concentrators (QC–LC). A broadband quantum dots heterojunction as absorption layer was designed by integrating CsPbI<sub>3</sub>:Ho<sup>3+</sup> perovskite quantum dots (PQDs) and PbS QDs to realize the spectral response from 400 to 1700 nm. The QC–LC by employing CsPbCl<sub>3</sub>:Cr<sup>3+</sup>, Ce<sup>3+</sup>, Yb<sup>3+</sup>, Er<sup>3+</sup> PQDs as luminescent conversion layer to collect and concentrate photon energy for boosting the DUV–UV (200–400 nm) photons response of PDs by waveguide effect. Such broadband PD displays good stability, and outstanding sensitivity with the detectivity of 3.19 × 10<sup>12</sup> Jones at 260 nm, 1.05 × 10<sup>13</sup> Jones at 460 nm and 2.23 × 10<sup>12</sup> Jones at 1550 nm, respectively. The findings provide a new strategy to construct broadband detector, offering more opportunities in future optoelectronic devices.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01604-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01604-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Highly DUV to NIR-II responsive broadband quantum dots heterojunction photodetectors by integrating quantum cutting luminescent concentrators
Low-cost, high-performance, and uncooled broadband photodetectors (PDs) have potential applications in optical communication etc., but it still remains a huge challenge to realize deep UV (DUV) to the second near-infrared (NIR-II) detection for a single broadband PD. Herein, a single PD affording broadband spectral response from 200 to 1700 nm is achieved with a vertical configuration based on quantum dots (QDs) heterojunction and quantum cutting luminescent concentrators (QC–LC). A broadband quantum dots heterojunction as absorption layer was designed by integrating CsPbI3:Ho3+ perovskite quantum dots (PQDs) and PbS QDs to realize the spectral response from 400 to 1700 nm. The QC–LC by employing CsPbCl3:Cr3+, Ce3+, Yb3+, Er3+ PQDs as luminescent conversion layer to collect and concentrate photon energy for boosting the DUV–UV (200–400 nm) photons response of PDs by waveguide effect. Such broadband PD displays good stability, and outstanding sensitivity with the detectivity of 3.19 × 1012 Jones at 260 nm, 1.05 × 1013 Jones at 460 nm and 2.23 × 1012 Jones at 1550 nm, respectively. The findings provide a new strategy to construct broadband detector, offering more opportunities in future optoelectronic devices.