揭示再生混凝土粉末碳化机制与早期胶凝反应性之间的联系:成分和微观结构的影响

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
{"title":"揭示再生混凝土粉末碳化机制与早期胶凝反应性之间的联系:成分和微观结构的影响","authors":"","doi":"10.1016/j.cemconres.2024.107697","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to establish relationship between carbonation regimes and the early pozzolanic reactivity of carbonated recycled concrete powder (CRCP) by comparing the composition, structure and surface properties of the carbonation products. The surface of dry CRCP was characterized by a silica-rich layer and contains low-polymerized silica phases along with over 18 % of unstable calcium carbonate (Cc). Wet CRCP exhibits a silica-rich surface with the highest degree of silica polymerization and stable calcite in its composition. Semi-dry CRCP has a calcium-rich surface also contains high silica polymerization and over 29 % unstable calcium carbonate, and the highest specific surface area, leading to the fastest silicon dissolution and calcium consumption during pozzolanic reactions. The early pozzolanic reaction kinetics in semi-dry and wet carbonation are limited by the dissolution of carbonation products, whereas dry carbonation does not exhibit this limitation. Understanding this connection is crucial for selecting optimal carbonation techniques to enhance waste concrete utilization.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":null,"pages":null},"PeriodicalIF":10.9000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing the connection between carbonation regimes and early pozzolanic reactivity of recycled concrete powder: Impact of composition and microstructure\",\"authors\":\"\",\"doi\":\"10.1016/j.cemconres.2024.107697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aims to establish relationship between carbonation regimes and the early pozzolanic reactivity of carbonated recycled concrete powder (CRCP) by comparing the composition, structure and surface properties of the carbonation products. The surface of dry CRCP was characterized by a silica-rich layer and contains low-polymerized silica phases along with over 18 % of unstable calcium carbonate (Cc). Wet CRCP exhibits a silica-rich surface with the highest degree of silica polymerization and stable calcite in its composition. Semi-dry CRCP has a calcium-rich surface also contains high silica polymerization and over 29 % unstable calcium carbonate, and the highest specific surface area, leading to the fastest silicon dissolution and calcium consumption during pozzolanic reactions. The early pozzolanic reaction kinetics in semi-dry and wet carbonation are limited by the dissolution of carbonation products, whereas dry carbonation does not exhibit this limitation. Understanding this connection is crucial for selecting optimal carbonation techniques to enhance waste concrete utilization.</div></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884624002783\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624002783","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过比较碳化产物的组成、结构和表面特性,确定碳化机制与碳化再生混凝土粉(CRCP)早期胶凝反应性之间的关系。干法 CRCP 的表面特征是富含二氧化硅层,含有低聚合二氧化硅相和超过 18% 的不稳定碳酸钙 (Cc)。湿润的 CRCP 表面富含二氧化硅,二氧化硅聚合度最高,成分中含有稳定的方解石。半干的 CRCP 表面富含钙质,也含有较高的二氧化硅聚合度和 29% 以上的不稳定碳酸钙,比表面积最大,因此在水胶凝反应过程中硅的溶解和钙的消耗速度最快。半干法和湿法碳化的早期水胶凝反应动力学受到碳化产物溶解的限制,而干法碳化则没有这种限制。了解这种联系对于选择最佳碳化技术以提高废弃混凝土利用率至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revealing the connection between carbonation regimes and early pozzolanic reactivity of recycled concrete powder: Impact of composition and microstructure
This study aims to establish relationship between carbonation regimes and the early pozzolanic reactivity of carbonated recycled concrete powder (CRCP) by comparing the composition, structure and surface properties of the carbonation products. The surface of dry CRCP was characterized by a silica-rich layer and contains low-polymerized silica phases along with over 18 % of unstable calcium carbonate (Cc). Wet CRCP exhibits a silica-rich surface with the highest degree of silica polymerization and stable calcite in its composition. Semi-dry CRCP has a calcium-rich surface also contains high silica polymerization and over 29 % unstable calcium carbonate, and the highest specific surface area, leading to the fastest silicon dissolution and calcium consumption during pozzolanic reactions. The early pozzolanic reaction kinetics in semi-dry and wet carbonation are limited by the dissolution of carbonation products, whereas dry carbonation does not exhibit this limitation. Understanding this connection is crucial for selecting optimal carbonation techniques to enhance waste concrete utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信