氧化还原介导的解耦海水直接分裂制取 H2

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Tao Liu, Cheng Lan, Min Tang, Mengxin Li, Yitao Xu, Hangrui Yang, Qingyue Deng, Wenchuan Jiang, Zhiyu Zhao, Yifan Wu, Heping Xie
{"title":"氧化还原介导的解耦海水直接分裂制取 H2","authors":"Tao Liu, Cheng Lan, Min Tang, Mengxin Li, Yitao Xu, Hangrui Yang, Qingyue Deng, Wenchuan Jiang, Zhiyu Zhao, Yifan Wu, Heping Xie","doi":"10.1038/s41467-024-53335-w","DOIUrl":null,"url":null,"abstract":"<p>Seawater direct electrolysis (SDE) using renewable energy provides a sustainable pathway to harness abundant oceanic hydrogen resources. However, the side-reaction of the chlorine electro-oxidation reaction (ClOR) severely decreased direct electrolysis efficiency of seawater and gradually corrodes the anode. In this study, a redox-mediated strategy is introduced to suppress the ClOR, and a decoupled seawater direct electrolysis (DSDE) system incorporating a separate O<sub>2</sub> evolution reactor is established. Ferricyanide/ferrocyanide ([Fe(CN)<sub>6</sub>]<sup>3−/4−</sup>) serves as an electron-mediator between the cell and the reactor, thereby enabling a more dynamically favorable half-reaction to supplant the traditional oxygen evolution reaction (OER). This alteration involves a straightforward, single-electron-transfer anodic reaction without gas precipitation and effectively eliminates the generation of chlorine-containing byproducts. By operating at low voltages (~1.37 V at 10 mA cm<sup>−2</sup> and ~1.57 V at 100 mA cm<sup>−2</sup>) and maintaining stability even in a Cl<sup>−</sup>-saturated seawater electrolyte, this system has the potential of undergoing decoupled seawater electrolysis with zero chlorine emissions. Further improvements in the high-performance redox-mediators and catalysts can provide enhanced cost-effectiveness and sustainability of the DSDE system.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redox-mediated decoupled seawater direct splitting for H2 production\",\"authors\":\"Tao Liu, Cheng Lan, Min Tang, Mengxin Li, Yitao Xu, Hangrui Yang, Qingyue Deng, Wenchuan Jiang, Zhiyu Zhao, Yifan Wu, Heping Xie\",\"doi\":\"10.1038/s41467-024-53335-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Seawater direct electrolysis (SDE) using renewable energy provides a sustainable pathway to harness abundant oceanic hydrogen resources. However, the side-reaction of the chlorine electro-oxidation reaction (ClOR) severely decreased direct electrolysis efficiency of seawater and gradually corrodes the anode. In this study, a redox-mediated strategy is introduced to suppress the ClOR, and a decoupled seawater direct electrolysis (DSDE) system incorporating a separate O<sub>2</sub> evolution reactor is established. Ferricyanide/ferrocyanide ([Fe(CN)<sub>6</sub>]<sup>3−/4−</sup>) serves as an electron-mediator between the cell and the reactor, thereby enabling a more dynamically favorable half-reaction to supplant the traditional oxygen evolution reaction (OER). This alteration involves a straightforward, single-electron-transfer anodic reaction without gas precipitation and effectively eliminates the generation of chlorine-containing byproducts. By operating at low voltages (~1.37 V at 10 mA cm<sup>−2</sup> and ~1.57 V at 100 mA cm<sup>−2</sup>) and maintaining stability even in a Cl<sup>−</sup>-saturated seawater electrolyte, this system has the potential of undergoing decoupled seawater electrolysis with zero chlorine emissions. Further improvements in the high-performance redox-mediators and catalysts can provide enhanced cost-effectiveness and sustainability of the DSDE system.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-53335-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53335-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

利用可再生能源进行海水直接电解(SDE)为利用丰富的海洋氢资源提供了一条可持续发展的途径。然而,氯电氧化反应(ClOR)的副反应严重降低了海水直接电解的效率,并逐渐腐蚀阳极。本研究引入了一种氧化还原介导的策略来抑制 ClOR,并建立了一个包含独立氧气进化反应器的解耦海水直接电解(DSDE)系统。铁氰化物/铁氰化物([Fe(CN)6]3-/4-)作为电池和反应器之间的电子介质,从而实现了更有利的半反应,取代了传统的氧进化反应(OER)。这种改变是一种直接的单电子转移阳极反应,没有气体析出,并有效地消除了含氯副产物的产生。通过在低电压下运行(10 mA cm-2 时 ~1.37 V,100 mA cm-2 时 ~1.57 V)并在 Cl 饱和的海水电解质中保持稳定,该系统有可能在零氯排放的情况下进行解耦海水电解。进一步改进高性能氧化还原介质和催化剂可以提高 DSDE 系统的成本效益和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Redox-mediated decoupled seawater direct splitting for H2 production

Redox-mediated decoupled seawater direct splitting for H2 production

Seawater direct electrolysis (SDE) using renewable energy provides a sustainable pathway to harness abundant oceanic hydrogen resources. However, the side-reaction of the chlorine electro-oxidation reaction (ClOR) severely decreased direct electrolysis efficiency of seawater and gradually corrodes the anode. In this study, a redox-mediated strategy is introduced to suppress the ClOR, and a decoupled seawater direct electrolysis (DSDE) system incorporating a separate O2 evolution reactor is established. Ferricyanide/ferrocyanide ([Fe(CN)6]3−/4−) serves as an electron-mediator between the cell and the reactor, thereby enabling a more dynamically favorable half-reaction to supplant the traditional oxygen evolution reaction (OER). This alteration involves a straightforward, single-electron-transfer anodic reaction without gas precipitation and effectively eliminates the generation of chlorine-containing byproducts. By operating at low voltages (~1.37 V at 10 mA cm−2 and ~1.57 V at 100 mA cm−2) and maintaining stability even in a Cl-saturated seawater electrolyte, this system has the potential of undergoing decoupled seawater electrolysis with zero chlorine emissions. Further improvements in the high-performance redox-mediators and catalysts can provide enhanced cost-effectiveness and sustainability of the DSDE system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信