用于自适应毫米波波束成形的宽带透射式可编程元表面

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Jie Tian, Shiyuan Li, Chong He, Weiren Zhu
{"title":"用于自适应毫米波波束成形的宽带透射式可编程元表面","authors":"Jie Tian, Shiyuan Li, Chong He, Weiren Zhu","doi":"10.1002/lpor.202401333","DOIUrl":null,"url":null,"abstract":"Programmable metasurfaces provide a promising paradigm for the beamforming of electromagnetic waves in the fifth-generation (5G) and sixth-generation (6G) wireless communications with low cost and low complexity. However, most of the existing researches are focused on the sub-6 GHz spectrum, which limited the gigabits per second (Gb s<sup>−1</sup>) high-speed data transmission on future wireless network. Additionally, as a step forward in the development of intelligent metasurfaces, extra peripheral devices are often required to sense environmental variations for self-adaptive modulations. Here, a wideband millimeter-wave programmable metasurface is presented for peripheral-free self-adaptive signal enhancement in 5G/6G wireless communication. The proposed transmissive programmable metasurface consists of <span data-altimg=\"/cms/asset/b84392f6-a8db-4d83-b03b-f87949a633e2/lpor202401333-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"2\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor202401333-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"20 times 20\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"operator\" rspace=\"4\" space=\"4\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor202401333:lpor202401333-math-0001\" display=\"inline\" location=\"graphic/lpor202401333-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-role=\"unknown\" data-semantic-speech=\"20 times 20\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">20</mn><mo data-semantic-=\"\" data-semantic-operator=\"infixop,×\" data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"operator\">×</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">20</mn></mrow>$20\\times 20$</annotation></semantics></math></mjx-assistive-mml></mjx-container> meta-atoms, exhibiting efficient transmission (<span data-altimg=\"/cms/asset/3b679fe2-b61f-4bc2-9526-8ae4c72455c4/lpor202401333-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor202401333-math-0002.png\"><mjx-semantics><mjx-mo data-semantic- data-semantic-role=\"inequality\" data-semantic-speech=\"less than or equals\" data-semantic-type=\"relation\"><mjx-c></mjx-c></mjx-mo></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor202401333:lpor202401333-math-0002\" display=\"inline\" location=\"graphic/lpor202401333-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mo data-semantic-=\"\" data-semantic-role=\"inequality\" data-semantic-speech=\"less than or equals\" data-semantic-type=\"relation\">≤</mo>$\\le$</annotation></semantics></math></mjx-assistive-mml></mjx-container>1 dB loss) and a stable 1-bit phase difference from 23.7 to 32.1 GHz, effectively covering the desired 5G millimeter-wave frequency bands: N257, N258, and N261. By integrating the self-adaptive algorithm based on received signal intensity into the controller, the programmable metasurface can self-adaptively establish an optimal or acceptable channel according to the predefined threshold values. To evaluate the performance of the prototype, an experiment on wavefront modulation was first conducted in a microwave chamber, verifying the wideband beamforming performance of the programmable metasurface. Moreover, self-adaptive signal enhancement and millimeter-wave wireless communication experiments were conducted in indoor environments, showing a maximum signal enhancement of 21.4 dB and a significant improvement in constellation. The proposed self-adaptive wideband programmable metasurface demonstrates high potential for application in 5G/6G millimeter-wave wireless networks.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"31 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wideband Transmissive Programmable Metasurface for Adaptive Millimeter-Wave Beamforming\",\"authors\":\"Jie Tian, Shiyuan Li, Chong He, Weiren Zhu\",\"doi\":\"10.1002/lpor.202401333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Programmable metasurfaces provide a promising paradigm for the beamforming of electromagnetic waves in the fifth-generation (5G) and sixth-generation (6G) wireless communications with low cost and low complexity. However, most of the existing researches are focused on the sub-6 GHz spectrum, which limited the gigabits per second (Gb s<sup>−1</sup>) high-speed data transmission on future wireless network. Additionally, as a step forward in the development of intelligent metasurfaces, extra peripheral devices are often required to sense environmental variations for self-adaptive modulations. Here, a wideband millimeter-wave programmable metasurface is presented for peripheral-free self-adaptive signal enhancement in 5G/6G wireless communication. The proposed transmissive programmable metasurface consists of <span data-altimg=\\\"/cms/asset/b84392f6-a8db-4d83-b03b-f87949a633e2/lpor202401333-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"2\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/lpor202401333-math-0001.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"20 times 20\\\" data-semantic-type=\\\"infixop\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,×\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"4\\\" space=\\\"4\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:18638880:media:lpor202401333:lpor202401333-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/lpor202401333-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"20 times 20\\\" data-semantic-type=\\\"infixop\\\"><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">20</mn><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,×\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"operator\\\">×</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">20</mn></mrow>$20\\\\times 20$</annotation></semantics></math></mjx-assistive-mml></mjx-container> meta-atoms, exhibiting efficient transmission (<span data-altimg=\\\"/cms/asset/3b679fe2-b61f-4bc2-9526-8ae4c72455c4/lpor202401333-math-0002.png\\\"></span><mjx-container ctxtmenu_counter=\\\"3\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/lpor202401333-math-0002.png\\\"><mjx-semantics><mjx-mo data-semantic- data-semantic-role=\\\"inequality\\\" data-semantic-speech=\\\"less than or equals\\\" data-semantic-type=\\\"relation\\\"><mjx-c></mjx-c></mjx-mo></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:18638880:media:lpor202401333:lpor202401333-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/lpor202401333-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mo data-semantic-=\\\"\\\" data-semantic-role=\\\"inequality\\\" data-semantic-speech=\\\"less than or equals\\\" data-semantic-type=\\\"relation\\\">≤</mo>$\\\\le$</annotation></semantics></math></mjx-assistive-mml></mjx-container>1 dB loss) and a stable 1-bit phase difference from 23.7 to 32.1 GHz, effectively covering the desired 5G millimeter-wave frequency bands: N257, N258, and N261. By integrating the self-adaptive algorithm based on received signal intensity into the controller, the programmable metasurface can self-adaptively establish an optimal or acceptable channel according to the predefined threshold values. To evaluate the performance of the prototype, an experiment on wavefront modulation was first conducted in a microwave chamber, verifying the wideband beamforming performance of the programmable metasurface. Moreover, self-adaptive signal enhancement and millimeter-wave wireless communication experiments were conducted in indoor environments, showing a maximum signal enhancement of 21.4 dB and a significant improvement in constellation. The proposed self-adaptive wideband programmable metasurface demonstrates high potential for application in 5G/6G millimeter-wave wireless networks.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202401333\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401333","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

可编程元表面为第五代(5G)和第六代(6G)无线通信中低成本、低复杂度的电磁波波束成形提供了一个前景广阔的范例。然而,现有研究大多集中在 6 GHz 以下频谱,这限制了未来无线网络的千兆比特/秒(Gb s-1)高速数据传输。此外,在开发智能元表面的过程中,往往需要额外的外围设备来感知环境变化,以实现自适应调制。本文介绍了一种宽带毫米波可编程元表面,用于 5G/6G 无线通信中的无外设自适应信号增强。所提出的透射式可编程元表面由 20×20 元原子乘以 20 元原子组成,在 23.7 至 32.1 GHz 范围内具有高效传输(损耗≤1 dB)和稳定的 1 位相位差,有效覆盖了所需的 5G 毫米波频段:N257、N258 和 N261。通过将基于接收信号强度的自适应算法集成到控制器中,可编程元面可根据预定义的阈值自适应地建立最佳或可接受的信道。为了评估原型的性能,首先在微波室中进行了波前调制实验,验证了可编程元面的宽带波束成形性能。此外,还在室内环境中进行了自适应信号增强和毫米波无线通信实验,结果表明最大信号增强达 21.4 dB,星座也有显著改善。所提出的自适应宽带可编程元表面在 5G/6G 毫米波无线网络中具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Wideband Transmissive Programmable Metasurface for Adaptive Millimeter-Wave Beamforming

Wideband Transmissive Programmable Metasurface for Adaptive Millimeter-Wave Beamforming
Programmable metasurfaces provide a promising paradigm for the beamforming of electromagnetic waves in the fifth-generation (5G) and sixth-generation (6G) wireless communications with low cost and low complexity. However, most of the existing researches are focused on the sub-6 GHz spectrum, which limited the gigabits per second (Gb s−1) high-speed data transmission on future wireless network. Additionally, as a step forward in the development of intelligent metasurfaces, extra peripheral devices are often required to sense environmental variations for self-adaptive modulations. Here, a wideband millimeter-wave programmable metasurface is presented for peripheral-free self-adaptive signal enhancement in 5G/6G wireless communication. The proposed transmissive programmable metasurface consists of 20×20$20\times 20$ meta-atoms, exhibiting efficient transmission ($\le$1 dB loss) and a stable 1-bit phase difference from 23.7 to 32.1 GHz, effectively covering the desired 5G millimeter-wave frequency bands: N257, N258, and N261. By integrating the self-adaptive algorithm based on received signal intensity into the controller, the programmable metasurface can self-adaptively establish an optimal or acceptable channel according to the predefined threshold values. To evaluate the performance of the prototype, an experiment on wavefront modulation was first conducted in a microwave chamber, verifying the wideband beamforming performance of the programmable metasurface. Moreover, self-adaptive signal enhancement and millimeter-wave wireless communication experiments were conducted in indoor environments, showing a maximum signal enhancement of 21.4 dB and a significant improvement in constellation. The proposed self-adaptive wideband programmable metasurface demonstrates high potential for application in 5G/6G millimeter-wave wireless networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信