Lei Jiang , Dan Wu , Fushuai Yu , Ruolin Ni , Jun Wang , Yongcai Zhang , Zhaohong Zhang , Shuang Xue
{"title":"构建具有更多热点的新型 ZnFe2O4/CNTs 双吸波纳米粒子,增强微波诱导催化活性:性能与机理","authors":"Lei Jiang , Dan Wu , Fushuai Yu , Ruolin Ni , Jun Wang , Yongcai Zhang , Zhaohong Zhang , Shuang Xue","doi":"10.1016/j.ceramint.2024.10.134","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, novel dual wave-absorbing ZnFe<sub>2</sub>O<sub>4</sub>/CNTs nanoparticles were successfully fabricated using a microwave hydrothermal method and applied for enhanced microwave-induced catalytic degradation of bisphenol A (BPA) in aqueous solution. The effects of various process parameters, including Fe<sup>3+</sup> concentration (mass ratio of ZnFe<sub>2</sub>O<sub>4</sub> to CNTs), MW irradiation time, MW power, initial BPA concentration, and catalyst dose on the degradation process were thoroughly assessed. The results indicate that ZnFe<sub>2</sub>O<sub>4</sub>/CNTs nanoparticles effectively utilize MW energy to generate more hot spots and exhibit superior MW catalytic activity at a 1.0:10.0 mass ratio (ZnFe<sub>2</sub>O<sub>4</sub>:CNTs), due to the synergistic effect between ZnFe<sub>2</sub>O<sub>4</sub> nanoparticles and CNTs under MW irradiation. Additionally, hydroxyl radicals (·OH) play a major role in the degradation process, while superoxide radicals (·O<sub>2</sub><sup>−</sup>) and holes (h<sup>+</sup>) play relatively minor roles. Potential intermediates and degradation pathways in the ZnFe<sub>2</sub>O<sub>4</sub>/CNTs/MW system have also been identified. Thus, the integrated ZnFe<sub>2</sub>O<sub>4</sub>/CNTs/MW technology shows great promise for treating environmental endocrine disruptors (EEDs) in water and wastewater.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 24","pages":"Pages 52808-52818"},"PeriodicalIF":5.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of novel dual wave-absorbing ZnFe2O4/CNTs nanoparticles with more hotspots for enhanced microwave-induced catalytic activity:Performance and mechanism\",\"authors\":\"Lei Jiang , Dan Wu , Fushuai Yu , Ruolin Ni , Jun Wang , Yongcai Zhang , Zhaohong Zhang , Shuang Xue\",\"doi\":\"10.1016/j.ceramint.2024.10.134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, novel dual wave-absorbing ZnFe<sub>2</sub>O<sub>4</sub>/CNTs nanoparticles were successfully fabricated using a microwave hydrothermal method and applied for enhanced microwave-induced catalytic degradation of bisphenol A (BPA) in aqueous solution. The effects of various process parameters, including Fe<sup>3+</sup> concentration (mass ratio of ZnFe<sub>2</sub>O<sub>4</sub> to CNTs), MW irradiation time, MW power, initial BPA concentration, and catalyst dose on the degradation process were thoroughly assessed. The results indicate that ZnFe<sub>2</sub>O<sub>4</sub>/CNTs nanoparticles effectively utilize MW energy to generate more hot spots and exhibit superior MW catalytic activity at a 1.0:10.0 mass ratio (ZnFe<sub>2</sub>O<sub>4</sub>:CNTs), due to the synergistic effect between ZnFe<sub>2</sub>O<sub>4</sub> nanoparticles and CNTs under MW irradiation. Additionally, hydroxyl radicals (·OH) play a major role in the degradation process, while superoxide radicals (·O<sub>2</sub><sup>−</sup>) and holes (h<sup>+</sup>) play relatively minor roles. Potential intermediates and degradation pathways in the ZnFe<sub>2</sub>O<sub>4</sub>/CNTs/MW system have also been identified. Thus, the integrated ZnFe<sub>2</sub>O<sub>4</sub>/CNTs/MW technology shows great promise for treating environmental endocrine disruptors (EEDs) in water and wastewater.</div></div>\",\"PeriodicalId\":267,\"journal\":{\"name\":\"Ceramics International\",\"volume\":\"50 24\",\"pages\":\"Pages 52808-52818\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0272884224046467\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224046467","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Construction of novel dual wave-absorbing ZnFe2O4/CNTs nanoparticles with more hotspots for enhanced microwave-induced catalytic activity:Performance and mechanism
In this study, novel dual wave-absorbing ZnFe2O4/CNTs nanoparticles were successfully fabricated using a microwave hydrothermal method and applied for enhanced microwave-induced catalytic degradation of bisphenol A (BPA) in aqueous solution. The effects of various process parameters, including Fe3+ concentration (mass ratio of ZnFe2O4 to CNTs), MW irradiation time, MW power, initial BPA concentration, and catalyst dose on the degradation process were thoroughly assessed. The results indicate that ZnFe2O4/CNTs nanoparticles effectively utilize MW energy to generate more hot spots and exhibit superior MW catalytic activity at a 1.0:10.0 mass ratio (ZnFe2O4:CNTs), due to the synergistic effect between ZnFe2O4 nanoparticles and CNTs under MW irradiation. Additionally, hydroxyl radicals (·OH) play a major role in the degradation process, while superoxide radicals (·O2−) and holes (h+) play relatively minor roles. Potential intermediates and degradation pathways in the ZnFe2O4/CNTs/MW system have also been identified. Thus, the integrated ZnFe2O4/CNTs/MW technology shows great promise for treating environmental endocrine disruptors (EEDs) in water and wastewater.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.