Xiaxiang Zhang , Xiao Luo , Xin Yang , Lei Zheng , Zhongguo Liu , Qizhong Huang
{"title":"沥青基碳纤维改性高导热 C/C 复合材料的烧蚀特性和机理","authors":"Xiaxiang Zhang , Xiao Luo , Xin Yang , Lei Zheng , Zhongguo Liu , Qizhong Huang","doi":"10.1016/j.ceramint.2024.10.147","DOIUrl":null,"url":null,"abstract":"<div><div>The novel C/C composites with thermal transport function were prepared using the mesophase-pitch carbon fibers (CF<sub>MP</sub>) as the thermal diffusion channels. The introduction of CF<sub>MP</sub> greatly improved the microstructure, thermal properties, and ablative resistance of the C/C composites. During the graphitization process, compared with PAN fibers (CF<sub>PAN</sub>), CF<sub>MP</sub> was more likely to be graphitized to form a highly ordered three-dimensional graphite structure. The highly organized microcrystalline structure of CF<sub>MP</sub> resulted in a tight interface with PyC that lessened the likelihood of flaws and cracks during graphitization. CF<sub>MP</sub>, which acted as a thermal conduction skeleton, significantly improved the thermal conductivity of C/C composites. After 3000 °C HTT, the thermal conductivity of C/C-3000-Z composites was increased to 51.70 and 225.02 W/(m K) in the XY and Z planes, respectively. During the ablation process, C/C-3000-Z specimen exhibited a lower temperature gradient and less thermal stress owing to the outstanding thermal properties and fewer defects. After 30 s ablation, the temperature difference of surface and backside was only 495.9 °C, and the mass and linear ablation rates were 0.3 μm/s and 0.9 mg/s, respectively.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 24","pages":"Pages 52967-52980"},"PeriodicalIF":5.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ablative property and mechanism of pitch-based carbon fiber modified C/C composites with high thermal conductivity\",\"authors\":\"Xiaxiang Zhang , Xiao Luo , Xin Yang , Lei Zheng , Zhongguo Liu , Qizhong Huang\",\"doi\":\"10.1016/j.ceramint.2024.10.147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The novel C/C composites with thermal transport function were prepared using the mesophase-pitch carbon fibers (CF<sub>MP</sub>) as the thermal diffusion channels. The introduction of CF<sub>MP</sub> greatly improved the microstructure, thermal properties, and ablative resistance of the C/C composites. During the graphitization process, compared with PAN fibers (CF<sub>PAN</sub>), CF<sub>MP</sub> was more likely to be graphitized to form a highly ordered three-dimensional graphite structure. The highly organized microcrystalline structure of CF<sub>MP</sub> resulted in a tight interface with PyC that lessened the likelihood of flaws and cracks during graphitization. CF<sub>MP</sub>, which acted as a thermal conduction skeleton, significantly improved the thermal conductivity of C/C composites. After 3000 °C HTT, the thermal conductivity of C/C-3000-Z composites was increased to 51.70 and 225.02 W/(m K) in the XY and Z planes, respectively. During the ablation process, C/C-3000-Z specimen exhibited a lower temperature gradient and less thermal stress owing to the outstanding thermal properties and fewer defects. After 30 s ablation, the temperature difference of surface and backside was only 495.9 °C, and the mass and linear ablation rates were 0.3 μm/s and 0.9 mg/s, respectively.</div></div>\",\"PeriodicalId\":267,\"journal\":{\"name\":\"Ceramics International\",\"volume\":\"50 24\",\"pages\":\"Pages 52967-52980\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0272884224046595\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224046595","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Ablative property and mechanism of pitch-based carbon fiber modified C/C composites with high thermal conductivity
The novel C/C composites with thermal transport function were prepared using the mesophase-pitch carbon fibers (CFMP) as the thermal diffusion channels. The introduction of CFMP greatly improved the microstructure, thermal properties, and ablative resistance of the C/C composites. During the graphitization process, compared with PAN fibers (CFPAN), CFMP was more likely to be graphitized to form a highly ordered three-dimensional graphite structure. The highly organized microcrystalline structure of CFMP resulted in a tight interface with PyC that lessened the likelihood of flaws and cracks during graphitization. CFMP, which acted as a thermal conduction skeleton, significantly improved the thermal conductivity of C/C composites. After 3000 °C HTT, the thermal conductivity of C/C-3000-Z composites was increased to 51.70 and 225.02 W/(m K) in the XY and Z planes, respectively. During the ablation process, C/C-3000-Z specimen exhibited a lower temperature gradient and less thermal stress owing to the outstanding thermal properties and fewer defects. After 30 s ablation, the temperature difference of surface and backside was only 495.9 °C, and the mass and linear ablation rates were 0.3 μm/s and 0.9 mg/s, respectively.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.