{"title":"利用粉煤灰微球和氧化铝纳米纤维开发复合超滤膜,高效去除水溶液中的染料","authors":"N.P. Fadeeva, I.R. Volkova, I.A. Kharchenko, E.V. Elsuf’ev, E.V. Fomenko, G.V. Akimochkina, K.A. Afanasova, I.V. Nemtsev, L.S. Tarasova, A.A. Yushkin, A.P. Nebesskaya, V.G. Prozorovich, A.I. Ivanets, I.I. Ryzhkov","doi":"10.1016/j.ceramint.2024.10.141","DOIUrl":null,"url":null,"abstract":"In this work, a novel type of ultrafiltration ceramic membranes with the support based on fine fly ash microspheres and selective layer based on the alumina nanofibers with an aluminosilicate binder is proposed. The average pore sizes of the support and selective layer are 0.46 μm and 29 nm, respectively. The membrane is characterized by the compressive strength of 96 MPa and water permeability of 207 l m<sup>–2</sup> h<sup>–1</sup> bar<sup>–1</sup>. It is shown that the binder provides structural stability of selective layer and adhesion to the support. With increasing the binder content, the water permeability increases, reaches maximum, and then slightly decreases. The developed membranes are used for ultrafiltration of Blue Dextran dyes aqueous solutions with molecular weights of 70 kDa and 500 kDa and concentrations of 50 and 100 mg/L. The dyes rejection varies in the range 97–99 %, while the permeate flux is 100–140 l m<sup>–2</sup> h<sup>–1</sup> at the transmembrane pressure of 4 bars. The dye retention occurs via adsorption at the initial stage, which leads to the narrowing of pore size. Further, the dye filtration occurs mainly due to size effects. The proposed membranes can be employed for dye removal from wastewater, and also allow chemical modification by carbon coating to be employed in electrochemically assisted ultrafiltration. The developed methodology promotes the recycling of thermal energy waste and introduces novel approaches to combine waste and synthesized raw materials in the production of low-cost ceramic membranes.","PeriodicalId":48790,"journal":{"name":"The Lancet Diabetes & Endocrinology","volume":"67 1","pages":""},"PeriodicalIF":44.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of composite ultrafiltration membrane from fly ash microspheres and alumina nanofibers for efficient dye removal from aqueous solutions\",\"authors\":\"N.P. Fadeeva, I.R. Volkova, I.A. Kharchenko, E.V. Elsuf’ev, E.V. Fomenko, G.V. Akimochkina, K.A. Afanasova, I.V. Nemtsev, L.S. Tarasova, A.A. Yushkin, A.P. Nebesskaya, V.G. Prozorovich, A.I. Ivanets, I.I. Ryzhkov\",\"doi\":\"10.1016/j.ceramint.2024.10.141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a novel type of ultrafiltration ceramic membranes with the support based on fine fly ash microspheres and selective layer based on the alumina nanofibers with an aluminosilicate binder is proposed. The average pore sizes of the support and selective layer are 0.46 μm and 29 nm, respectively. The membrane is characterized by the compressive strength of 96 MPa and water permeability of 207 l m<sup>–2</sup> h<sup>–1</sup> bar<sup>–1</sup>. It is shown that the binder provides structural stability of selective layer and adhesion to the support. With increasing the binder content, the water permeability increases, reaches maximum, and then slightly decreases. The developed membranes are used for ultrafiltration of Blue Dextran dyes aqueous solutions with molecular weights of 70 kDa and 500 kDa and concentrations of 50 and 100 mg/L. The dyes rejection varies in the range 97–99 %, while the permeate flux is 100–140 l m<sup>–2</sup> h<sup>–1</sup> at the transmembrane pressure of 4 bars. The dye retention occurs via adsorption at the initial stage, which leads to the narrowing of pore size. Further, the dye filtration occurs mainly due to size effects. The proposed membranes can be employed for dye removal from wastewater, and also allow chemical modification by carbon coating to be employed in electrochemically assisted ultrafiltration. The developed methodology promotes the recycling of thermal energy waste and introduces novel approaches to combine waste and synthesized raw materials in the production of low-cost ceramic membranes.\",\"PeriodicalId\":48790,\"journal\":{\"name\":\"The Lancet Diabetes & Endocrinology\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":44.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Lancet Diabetes & Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ceramint.2024.10.141\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet Diabetes & Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ceramint.2024.10.141","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Development of composite ultrafiltration membrane from fly ash microspheres and alumina nanofibers for efficient dye removal from aqueous solutions
In this work, a novel type of ultrafiltration ceramic membranes with the support based on fine fly ash microspheres and selective layer based on the alumina nanofibers with an aluminosilicate binder is proposed. The average pore sizes of the support and selective layer are 0.46 μm and 29 nm, respectively. The membrane is characterized by the compressive strength of 96 MPa and water permeability of 207 l m–2 h–1 bar–1. It is shown that the binder provides structural stability of selective layer and adhesion to the support. With increasing the binder content, the water permeability increases, reaches maximum, and then slightly decreases. The developed membranes are used for ultrafiltration of Blue Dextran dyes aqueous solutions with molecular weights of 70 kDa and 500 kDa and concentrations of 50 and 100 mg/L. The dyes rejection varies in the range 97–99 %, while the permeate flux is 100–140 l m–2 h–1 at the transmembrane pressure of 4 bars. The dye retention occurs via adsorption at the initial stage, which leads to the narrowing of pore size. Further, the dye filtration occurs mainly due to size effects. The proposed membranes can be employed for dye removal from wastewater, and also allow chemical modification by carbon coating to be employed in electrochemically assisted ultrafiltration. The developed methodology promotes the recycling of thermal energy waste and introduces novel approaches to combine waste and synthesized raw materials in the production of low-cost ceramic membranes.
期刊介绍:
The Lancet Diabetes & Endocrinology, an independent journal with a global perspective and strong clinical focus, features original clinical research, expert reviews, news, and opinion pieces in each monthly issue. Covering topics like diabetes, obesity, nutrition, and more, the journal provides insights into clinical advances and practice-changing research worldwide. It welcomes original research advocating change or shedding light on clinical practice, as well as informative reviews on related topics, especially those with global health importance and relevance to low-income and middle-income countries. The journal publishes various content types, including Articles, Reviews, Comments, Correspondence, Health Policy, and Personal Views, along with Series and Commissions aiming to drive positive change in clinical practice and health policy in diabetes and endocrinology.