{"title":"基于 SiO2-CaO-Na2O-P2O5 季化合物体系的熔融衍生 BG 的物理力学性能、羟基磷灰石转化率、生物降解性和抗菌活性研究","authors":"Fulong Li, Ping Liu, Jiaqi Jiang, Linghui Kong, Xiaohong Chen","doi":"10.1016/j.ceramint.2024.10.162","DOIUrl":null,"url":null,"abstract":"<div><div>The slow biodegradation and low hydroxyapatite (HA) conversion of silicate-based bioactive glasses (BGs) have severely limited their compatibility with biological tissues. To address these challenges, four samples in the form of (52-x)SiO<sub>2</sub>-24Na<sub>2</sub>O-24CaO-xP<sub>2</sub>O<sub>5</sub>, where x is 2, 4, 6, and 8 mol%, were prepared by a unified melt-quenching method, and the feasibility of P<sub>2</sub>O<sub>5</sub> content fine-tuning in improving glass structure, biodegradability, bioactivity, and antibacterial efficiency was evaluated. The results indicated that as the degree of P<sub>2</sub>O<sub>5</sub> substitution increased, the network structure of the glass became looser, which provided favourable conditions for its degradation. The variation in activation energy for Si<sup>4+</sup> ion release from 0.39 eV to 0.25 eV also supported this observation. After 7 days of immersion in simulated body fluid (SBF), analyses by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) confirmed that the Ca-P compounds deposited on the glass surfaces were essentially hydroxycarbonated apatite (HCA), and scanning electron microscopy (SEM) images revealed that the generation rate of the HCA were positively correlated with the P<sub>2</sub>O<sub>5</sub> content in the glass system. Meanwhile, antibacterial studies showed that after 24 h of incubation, the antibacterial activity of the four glass samples against <em>Escherichia coli</em> (<em>E. coli</em>) successively increased, with the highest percentage reaching 87.13 ± 2.51 %. In conclusion, this study demonstrates that controllable degradation and high-level bioactivity can be achieved by modulating the P<sub>2</sub>O<sub>5</sub> content in silicate-based BGs, which proves to be an effective and practicable strategy.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 24","pages":"Pages 53129-53140"},"PeriodicalIF":5.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physico-mechanical properties, hydroxyapatite conversion, biodegradability and antibacterial activity studies of melt-derived BGs based on SiO2-CaO-Na2O-P2O5 quaternary system\",\"authors\":\"Fulong Li, Ping Liu, Jiaqi Jiang, Linghui Kong, Xiaohong Chen\",\"doi\":\"10.1016/j.ceramint.2024.10.162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The slow biodegradation and low hydroxyapatite (HA) conversion of silicate-based bioactive glasses (BGs) have severely limited their compatibility with biological tissues. To address these challenges, four samples in the form of (52-x)SiO<sub>2</sub>-24Na<sub>2</sub>O-24CaO-xP<sub>2</sub>O<sub>5</sub>, where x is 2, 4, 6, and 8 mol%, were prepared by a unified melt-quenching method, and the feasibility of P<sub>2</sub>O<sub>5</sub> content fine-tuning in improving glass structure, biodegradability, bioactivity, and antibacterial efficiency was evaluated. The results indicated that as the degree of P<sub>2</sub>O<sub>5</sub> substitution increased, the network structure of the glass became looser, which provided favourable conditions for its degradation. The variation in activation energy for Si<sup>4+</sup> ion release from 0.39 eV to 0.25 eV also supported this observation. After 7 days of immersion in simulated body fluid (SBF), analyses by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) confirmed that the Ca-P compounds deposited on the glass surfaces were essentially hydroxycarbonated apatite (HCA), and scanning electron microscopy (SEM) images revealed that the generation rate of the HCA were positively correlated with the P<sub>2</sub>O<sub>5</sub> content in the glass system. Meanwhile, antibacterial studies showed that after 24 h of incubation, the antibacterial activity of the four glass samples against <em>Escherichia coli</em> (<em>E. coli</em>) successively increased, with the highest percentage reaching 87.13 ± 2.51 %. In conclusion, this study demonstrates that controllable degradation and high-level bioactivity can be achieved by modulating the P<sub>2</sub>O<sub>5</sub> content in silicate-based BGs, which proves to be an effective and practicable strategy.</div></div>\",\"PeriodicalId\":267,\"journal\":{\"name\":\"Ceramics International\",\"volume\":\"50 24\",\"pages\":\"Pages 53129-53140\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0272884224046765\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224046765","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Physico-mechanical properties, hydroxyapatite conversion, biodegradability and antibacterial activity studies of melt-derived BGs based on SiO2-CaO-Na2O-P2O5 quaternary system
The slow biodegradation and low hydroxyapatite (HA) conversion of silicate-based bioactive glasses (BGs) have severely limited their compatibility with biological tissues. To address these challenges, four samples in the form of (52-x)SiO2-24Na2O-24CaO-xP2O5, where x is 2, 4, 6, and 8 mol%, were prepared by a unified melt-quenching method, and the feasibility of P2O5 content fine-tuning in improving glass structure, biodegradability, bioactivity, and antibacterial efficiency was evaluated. The results indicated that as the degree of P2O5 substitution increased, the network structure of the glass became looser, which provided favourable conditions for its degradation. The variation in activation energy for Si4+ ion release from 0.39 eV to 0.25 eV also supported this observation. After 7 days of immersion in simulated body fluid (SBF), analyses by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) confirmed that the Ca-P compounds deposited on the glass surfaces were essentially hydroxycarbonated apatite (HCA), and scanning electron microscopy (SEM) images revealed that the generation rate of the HCA were positively correlated with the P2O5 content in the glass system. Meanwhile, antibacterial studies showed that after 24 h of incubation, the antibacterial activity of the four glass samples against Escherichia coli (E. coli) successively increased, with the highest percentage reaching 87.13 ± 2.51 %. In conclusion, this study demonstrates that controllable degradation and high-level bioactivity can be achieved by modulating the P2O5 content in silicate-based BGs, which proves to be an effective and practicable strategy.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.