具有两个不同端基的不对称液晶供体可实现高效的全小分子有机太阳能电池

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Chenhe Wang, Tianyi Chen, Shuixing Li, Yecheng Shen, Jinyang Yu, Adiljan Wupur, Yongmin Luo, Mengting Wang, Xiukun Ye, Jiaying Wu, Minmin Shi and Hongzheng Chen
{"title":"具有两个不同端基的不对称液晶供体可实现高效的全小分子有机太阳能电池","authors":"Chenhe Wang, Tianyi Chen, Shuixing Li, Yecheng Shen, Jinyang Yu, Adiljan Wupur, Yongmin Luo, Mengting Wang, Xiukun Ye, Jiaying Wu, Minmin Shi and Hongzheng Chen","doi":"10.1039/D4TA06126H","DOIUrl":null,"url":null,"abstract":"<p >Asymmetric substitution on donors has been shown to be an effective approach to optimize the morphology and photovoltaic performance of all-small-molecule organic solar cells (ASM-OSCs), but this strategy is rarely applied in liquid crystalline small-molecule donors (SMDs). Herein, one of the two rhodanine (R) end groups on the well-known liquid crystalline molecule BTR-Cl is replaced by 2-ethylhexyl cyanoacetate (CA), yielding three new asymmetric SMDs, namely, <strong>BT-CAR2</strong>, <strong>BT-CAR4</strong>, and <strong>BT-CAR6</strong>, whose alkyl chain lengths on the rhodanine groups are 2, 4, and 6 carbon atoms, respectively. The asymmetric structure enhances intermolecular interactions, and the three SMDs all exhibit highly ordered edge-on orientations in the solid states. Notably, the <strong>BT-CAR4</strong>:Y6 film achieves a finely-tuned morphology due to the optimal miscibility between <strong>BT-CAR4</strong> and Y6. Consequently, all three ASM-OSCs exhibit efficiencies of around 15%, significantly surpassing the previously reported efficiency of the BTR-Cl based counterpart (13.6%). Specifically, the <strong>BT-CAR4</strong>:Y6 device achieves the highest efficiency of 15.52%. This work presents a promising avenue for designing efficient SMDs for ASM-OSCs.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 45","pages":" 31163-31172"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric liquid crystalline donors with two different end groups enable efficient all-small-molecule organic solar cells†\",\"authors\":\"Chenhe Wang, Tianyi Chen, Shuixing Li, Yecheng Shen, Jinyang Yu, Adiljan Wupur, Yongmin Luo, Mengting Wang, Xiukun Ye, Jiaying Wu, Minmin Shi and Hongzheng Chen\",\"doi\":\"10.1039/D4TA06126H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Asymmetric substitution on donors has been shown to be an effective approach to optimize the morphology and photovoltaic performance of all-small-molecule organic solar cells (ASM-OSCs), but this strategy is rarely applied in liquid crystalline small-molecule donors (SMDs). Herein, one of the two rhodanine (R) end groups on the well-known liquid crystalline molecule BTR-Cl is replaced by 2-ethylhexyl cyanoacetate (CA), yielding three new asymmetric SMDs, namely, <strong>BT-CAR2</strong>, <strong>BT-CAR4</strong>, and <strong>BT-CAR6</strong>, whose alkyl chain lengths on the rhodanine groups are 2, 4, and 6 carbon atoms, respectively. The asymmetric structure enhances intermolecular interactions, and the three SMDs all exhibit highly ordered edge-on orientations in the solid states. Notably, the <strong>BT-CAR4</strong>:Y6 film achieves a finely-tuned morphology due to the optimal miscibility between <strong>BT-CAR4</strong> and Y6. Consequently, all three ASM-OSCs exhibit efficiencies of around 15%, significantly surpassing the previously reported efficiency of the BTR-Cl based counterpart (13.6%). Specifically, the <strong>BT-CAR4</strong>:Y6 device achieves the highest efficiency of 15.52%. This work presents a promising avenue for designing efficient SMDs for ASM-OSCs.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 45\",\"pages\":\" 31163-31172\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta06126h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta06126h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

供体的不对称取代已被证明是优化全小分子有机太阳能电池(ASM-OSCs)形态和光电性能的有效方法,但这种策略很少应用于液晶小分子供体(SMDs)。在这里,著名的液晶分子 BTR-Cl 上的两个罗丹宁(R)端基团之一被氰基乙酸 2-乙基己酯 (CA) 取代,从而产生了三种新的不对称 SMD:BT-CAR2、BT-CAR4 和 BT-CAR6,其罗丹宁基团上的烷基链长度分别为 2、4 和 6 个碳原子。不对称结构增强了分子间的相互作用,三种 SMD 在固态下都表现出高度有序的边缘定向。值得注意的是,BT-CAR4:Y6 薄膜由于 BT-CAR4 和 Y6 之间的最佳混溶性而实现了精细的形态。因此,这三种 ASM-OSC 的效率都达到了 15%左右,大大超过了之前报道的基于 BTR-Cl 的对应效率(13.6%)。具体来说,BT-CAR4:Y6 器件的效率最高,达到 15.52%。这项工作为设计 ASM-OSC 的高效 SMD 提供了一条大有可为的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymmetric liquid crystalline donors with two different end groups enable efficient all-small-molecule organic solar cells†

Asymmetric liquid crystalline donors with two different end groups enable efficient all-small-molecule organic solar cells†

Asymmetric substitution on donors has been shown to be an effective approach to optimize the morphology and photovoltaic performance of all-small-molecule organic solar cells (ASM-OSCs), but this strategy is rarely applied in liquid crystalline small-molecule donors (SMDs). Herein, one of the two rhodanine (R) end groups on the well-known liquid crystalline molecule BTR-Cl is replaced by 2-ethylhexyl cyanoacetate (CA), yielding three new asymmetric SMDs, namely, BT-CAR2, BT-CAR4, and BT-CAR6, whose alkyl chain lengths on the rhodanine groups are 2, 4, and 6 carbon atoms, respectively. The asymmetric structure enhances intermolecular interactions, and the three SMDs all exhibit highly ordered edge-on orientations in the solid states. Notably, the BT-CAR4:Y6 film achieves a finely-tuned morphology due to the optimal miscibility between BT-CAR4 and Y6. Consequently, all three ASM-OSCs exhibit efficiencies of around 15%, significantly surpassing the previously reported efficiency of the BTR-Cl based counterpart (13.6%). Specifically, the BT-CAR4:Y6 device achieves the highest efficiency of 15.52%. This work presents a promising avenue for designing efficient SMDs for ASM-OSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信