Xiaohua Chen, Jieping Wu, Bailing Zhou, Manfang Zhu, Jin Zhang, Na Zhou, Yi Zhun Zhu, Xin Zhang, Xingmei Duan, Ke Men
{"title":"基于细菌裂解物的双功能 mRNA 纳米制剂用于高效结肠癌免疫基因疗法","authors":"Xiaohua Chen, Jieping Wu, Bailing Zhou, Manfang Zhu, Jin Zhang, Na Zhou, Yi Zhun Zhu, Xin Zhang, Xingmei Duan, Ke Men","doi":"10.1021/acsami.4c07684","DOIUrl":null,"url":null,"abstract":"mRNA-based nonviral gene therapy has played an important role in cancer therapy, however, the limited delivery efficiency and therapeutic capacity still require further exploration and enhancement. Immunogene therapy provides a strategy for cancer treatment. Bacteria are tiny single-celled living organisms, many of which can be found in and on the human body and are beneficial to humans. <i>Lactobacillus reuteri</i> is a bacterial member of the gut flora, and recent research has shown that it can reduce intestinal inflammation by stimulating an immunomodulatory response. <i>L. reuteri</i> lysate represents an ideal resource for constructing advanced mRNA delivery systems with immune stimulation potential. Here, we prepared a bifunctional mRNA delivery system DMP-Lac (DOTAP-mPEG–PCL-<i>L. reuteri</i> lysate), which successfully codelivered <i>L. reuteri</i> lysate and IL-23A mRNA, exhibited a high mRNA delivery efficiency of 75.56% ± 0.85%, and strongly promoted the maturation and activation of the immune system in vivo. Both the CT26 abdominal metastasis model and the lung metastasis model also exhibited a good therapeutic effect, and the tumor inhibition rate of DMP-Lac/IL-23A group reached 97.92%. Protein chip technology verified that DMP acted as an immune adjuvant, demonstrating that the <i>L. reuteri</i> lysate could regulate the related immune cells, while IL-23 mRNA caused changes in downstream factors, thus producing the corresponding tumor treatment effect. The DMP-Lac/IL-23A complex exhibited strong anticancer immunotherapeutic effects. Our results demonstrated that this bifunctional mRNA formulation served as a tumor-specific nanomedicine, providing an advanced strategy for colon cancer immunogene therapy.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"6 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial Lysate–Based Bifunctional mRNA Nanoformulation for Efficient Colon Cancer Immunogene Therapy\",\"authors\":\"Xiaohua Chen, Jieping Wu, Bailing Zhou, Manfang Zhu, Jin Zhang, Na Zhou, Yi Zhun Zhu, Xin Zhang, Xingmei Duan, Ke Men\",\"doi\":\"10.1021/acsami.4c07684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"mRNA-based nonviral gene therapy has played an important role in cancer therapy, however, the limited delivery efficiency and therapeutic capacity still require further exploration and enhancement. Immunogene therapy provides a strategy for cancer treatment. Bacteria are tiny single-celled living organisms, many of which can be found in and on the human body and are beneficial to humans. <i>Lactobacillus reuteri</i> is a bacterial member of the gut flora, and recent research has shown that it can reduce intestinal inflammation by stimulating an immunomodulatory response. <i>L. reuteri</i> lysate represents an ideal resource for constructing advanced mRNA delivery systems with immune stimulation potential. Here, we prepared a bifunctional mRNA delivery system DMP-Lac (DOTAP-mPEG–PCL-<i>L. reuteri</i> lysate), which successfully codelivered <i>L. reuteri</i> lysate and IL-23A mRNA, exhibited a high mRNA delivery efficiency of 75.56% ± 0.85%, and strongly promoted the maturation and activation of the immune system in vivo. Both the CT26 abdominal metastasis model and the lung metastasis model also exhibited a good therapeutic effect, and the tumor inhibition rate of DMP-Lac/IL-23A group reached 97.92%. Protein chip technology verified that DMP acted as an immune adjuvant, demonstrating that the <i>L. reuteri</i> lysate could regulate the related immune cells, while IL-23 mRNA caused changes in downstream factors, thus producing the corresponding tumor treatment effect. The DMP-Lac/IL-23A complex exhibited strong anticancer immunotherapeutic effects. Our results demonstrated that this bifunctional mRNA formulation served as a tumor-specific nanomedicine, providing an advanced strategy for colon cancer immunogene therapy.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c07684\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c07684","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Bacterial Lysate–Based Bifunctional mRNA Nanoformulation for Efficient Colon Cancer Immunogene Therapy
mRNA-based nonviral gene therapy has played an important role in cancer therapy, however, the limited delivery efficiency and therapeutic capacity still require further exploration and enhancement. Immunogene therapy provides a strategy for cancer treatment. Bacteria are tiny single-celled living organisms, many of which can be found in and on the human body and are beneficial to humans. Lactobacillus reuteri is a bacterial member of the gut flora, and recent research has shown that it can reduce intestinal inflammation by stimulating an immunomodulatory response. L. reuteri lysate represents an ideal resource for constructing advanced mRNA delivery systems with immune stimulation potential. Here, we prepared a bifunctional mRNA delivery system DMP-Lac (DOTAP-mPEG–PCL-L. reuteri lysate), which successfully codelivered L. reuteri lysate and IL-23A mRNA, exhibited a high mRNA delivery efficiency of 75.56% ± 0.85%, and strongly promoted the maturation and activation of the immune system in vivo. Both the CT26 abdominal metastasis model and the lung metastasis model also exhibited a good therapeutic effect, and the tumor inhibition rate of DMP-Lac/IL-23A group reached 97.92%. Protein chip technology verified that DMP acted as an immune adjuvant, demonstrating that the L. reuteri lysate could regulate the related immune cells, while IL-23 mRNA caused changes in downstream factors, thus producing the corresponding tumor treatment effect. The DMP-Lac/IL-23A complex exhibited strong anticancer immunotherapeutic effects. Our results demonstrated that this bifunctional mRNA formulation served as a tumor-specific nanomedicine, providing an advanced strategy for colon cancer immunogene therapy.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.