论 1-典型、一步、矩阵-周期势的超加压力

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Tom Rush
{"title":"论 1-典型、一步、矩阵-周期势的超加压力","authors":"Tom Rush","doi":"10.1007/s00220-024-05118-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\((\\Sigma _T,\\sigma )\\)</span> be a subshift of finite type with primitive adjacency matrix <span>\\(T\\)</span>, <span>\\(\\psi :\\Sigma _T \\rightarrow \\mathbb {R}\\)</span> a Hölder continuous potential, and <span>\\(\\mathcal {A}:\\Sigma _T \\rightarrow \\textrm{GL}_d(\\mathbb {R})\\)</span> a 1-typical, one-step cocycle. For <span>\\(t \\in \\mathbb {R}\\)</span> consider the sequences of potentials <span>\\(\\Phi _t=(\\varphi _{t,n})_{n \\in \\mathbb {N}}\\)</span> defined by </p><div><div><span>$$\\begin{aligned}\\varphi _{t,n}(x):=S_n \\psi (x) + t\\log \\Vert \\mathcal {A}^n(x)\\Vert , \\, \\forall n \\in \\mathbb {N}.\\end{aligned}$$</span></div></div><p>Using the family of transfer operators defined in this setting by Park and Piraino, for all <span>\\(t&lt;0\\)</span> sufficiently close to 0 we prove the existence of Gibbs-type measures for the superadditive sequences of potentials <span>\\(\\Phi _t\\)</span>. This extends the results of the well-understood subadditive case where <span>\\(t \\ge 0\\)</span>. Prior to this, Gibbs-type measures were only known to exist for <span>\\(t&lt;0\\)</span> in the conformal, the reducible, the positive, or the dominated, planar settings, in which case they are Gibbs measures in the classical sense. We further prove that the topological pressure function <span>\\(t \\mapsto P_{\\textrm{top}}(\\Phi _t,\\sigma )\\)</span> is analytic in an open neighbourhood of 0 and has derivative given by the Lyapunov exponents of these Gibbs-type measures.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05118-z.pdf","citationCount":"0","resultStr":"{\"title\":\"On the Superadditive Pressure for 1-Typical, One-Step, Matrix-Cocycle Potentials\",\"authors\":\"Tom Rush\",\"doi\":\"10.1007/s00220-024-05118-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\((\\\\Sigma _T,\\\\sigma )\\\\)</span> be a subshift of finite type with primitive adjacency matrix <span>\\\\(T\\\\)</span>, <span>\\\\(\\\\psi :\\\\Sigma _T \\\\rightarrow \\\\mathbb {R}\\\\)</span> a Hölder continuous potential, and <span>\\\\(\\\\mathcal {A}:\\\\Sigma _T \\\\rightarrow \\\\textrm{GL}_d(\\\\mathbb {R})\\\\)</span> a 1-typical, one-step cocycle. For <span>\\\\(t \\\\in \\\\mathbb {R}\\\\)</span> consider the sequences of potentials <span>\\\\(\\\\Phi _t=(\\\\varphi _{t,n})_{n \\\\in \\\\mathbb {N}}\\\\)</span> defined by </p><div><div><span>$$\\\\begin{aligned}\\\\varphi _{t,n}(x):=S_n \\\\psi (x) + t\\\\log \\\\Vert \\\\mathcal {A}^n(x)\\\\Vert , \\\\, \\\\forall n \\\\in \\\\mathbb {N}.\\\\end{aligned}$$</span></div></div><p>Using the family of transfer operators defined in this setting by Park and Piraino, for all <span>\\\\(t&lt;0\\\\)</span> sufficiently close to 0 we prove the existence of Gibbs-type measures for the superadditive sequences of potentials <span>\\\\(\\\\Phi _t\\\\)</span>. This extends the results of the well-understood subadditive case where <span>\\\\(t \\\\ge 0\\\\)</span>. Prior to this, Gibbs-type measures were only known to exist for <span>\\\\(t&lt;0\\\\)</span> in the conformal, the reducible, the positive, or the dominated, planar settings, in which case they are Gibbs measures in the classical sense. We further prove that the topological pressure function <span>\\\\(t \\\\mapsto P_{\\\\textrm{top}}(\\\\Phi _t,\\\\sigma )\\\\)</span> is analytic in an open neighbourhood of 0 and has derivative given by the Lyapunov exponents of these Gibbs-type measures.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"405 11\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-05118-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05118-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05118-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

让 \((\Sigma _T,\sigma )\) 是一个有限类型的子移位,具有原始邻接矩阵 \(T\), \(\psi :\是一个荷尔德连续势,并且(\mathcal {A}:\Sigma _T \rightarrow \textrm{GL}_d(\mathbb {R}))是一个1-典型的、一步的循环。对于 \(t \in \mathbb {R}\) 考虑电势序列 \(\Phi _t=(\varphi _{t,n})_{n \in \mathbb {N}}\) 由 $$\begin{aligned}\varphi _{t,n}(x):=S_n \psi (x) + t\log \Vert \mathcal {A}^n(x)\Vert , \, \forall n \in \mathbb {N}.\end{aligned}$$利用 Park 和 Piraino 在这种情况下定义的转移算子族,对于所有足够接近 0 的 \(t<0\),我们证明了电势的超加法序列 \(\Phi _t\)的吉布斯类型度量的存在性。这扩展了广为人知的次正情况的结果,即 \(t\ge 0\).在此之前,人们只知道在共形、可还原、正或被支配、平面的情况下存在吉布斯类型的度量,在这种情况下,它们是经典意义上的吉布斯度量。我们进一步证明拓扑压力函数(t)映射到 P_{textrm{top}}(\Phi _t,\sigma )\) 在 0 的开放邻域中是解析的,其导数由这些吉布斯量的李雅普诺夫指数给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Superadditive Pressure for 1-Typical, One-Step, Matrix-Cocycle Potentials

Let \((\Sigma _T,\sigma )\) be a subshift of finite type with primitive adjacency matrix \(T\), \(\psi :\Sigma _T \rightarrow \mathbb {R}\) a Hölder continuous potential, and \(\mathcal {A}:\Sigma _T \rightarrow \textrm{GL}_d(\mathbb {R})\) a 1-typical, one-step cocycle. For \(t \in \mathbb {R}\) consider the sequences of potentials \(\Phi _t=(\varphi _{t,n})_{n \in \mathbb {N}}\) defined by

$$\begin{aligned}\varphi _{t,n}(x):=S_n \psi (x) + t\log \Vert \mathcal {A}^n(x)\Vert , \, \forall n \in \mathbb {N}.\end{aligned}$$

Using the family of transfer operators defined in this setting by Park and Piraino, for all \(t<0\) sufficiently close to 0 we prove the existence of Gibbs-type measures for the superadditive sequences of potentials \(\Phi _t\). This extends the results of the well-understood subadditive case where \(t \ge 0\). Prior to this, Gibbs-type measures were only known to exist for \(t<0\) in the conformal, the reducible, the positive, or the dominated, planar settings, in which case they are Gibbs measures in the classical sense. We further prove that the topological pressure function \(t \mapsto P_{\textrm{top}}(\Phi _t,\sigma )\) is analytic in an open neighbourhood of 0 and has derivative given by the Lyapunov exponents of these Gibbs-type measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信