非交换对数索波列夫不等式

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Yong Jiao, Sijie Luo, Dmitriy Zanin, Dejian Zhou
{"title":"非交换对数索波列夫不等式","authors":"Yong Jiao,&nbsp;Sijie Luo,&nbsp;Dmitriy Zanin,&nbsp;Dejian Zhou","doi":"10.1007/s00220-024-05145-w","DOIUrl":null,"url":null,"abstract":"<div><p>We show that the logarithmic Sobolev inequality holds for an arbitrary hypercontractive semigroup <span>\\(\\{e^{-tP}\\}_{t\\ge 0}\\)</span> acting on a noncommutative probability space <span>\\(({\\mathcal {M}},\\tau )\\)</span>: </p><div><div><span>$$\\begin{aligned} \\Vert x\\Vert _{L_p(\\log L)^{ps}({\\mathcal {M}})}\\le c_{p,s}\\Vert P^s(x)\\Vert _{L_p({\\mathcal {M}})},\\quad 1&lt;p&lt;\\infty , \\end{aligned}$$</span></div></div><p>for every mean zero <i>x</i> and <span>\\(0&lt;s&lt;\\infty \\)</span>. By selecting <span>\\(s=1/2\\)</span>, one can recover the <i>p</i>-logarithmic Sobolev inequality whenever the Riesz transform is bounded. Our inequality applies to numerous concrete cases, including Poisson semigroups for free groups, the Ornstein-Uhlenbeck semigroup for mixed <i>Q</i>-gaussian von Neumann algebras, the free product for Ornstein-Uhlenbeck semigroups etc. This provides a unified approach for functional analysis form of logarithmic Sobolev inequalities in general noncommutative setting.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncommutative Logarithmic Sobolev Inequalities\",\"authors\":\"Yong Jiao,&nbsp;Sijie Luo,&nbsp;Dmitriy Zanin,&nbsp;Dejian Zhou\",\"doi\":\"10.1007/s00220-024-05145-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that the logarithmic Sobolev inequality holds for an arbitrary hypercontractive semigroup <span>\\\\(\\\\{e^{-tP}\\\\}_{t\\\\ge 0}\\\\)</span> acting on a noncommutative probability space <span>\\\\(({\\\\mathcal {M}},\\\\tau )\\\\)</span>: </p><div><div><span>$$\\\\begin{aligned} \\\\Vert x\\\\Vert _{L_p(\\\\log L)^{ps}({\\\\mathcal {M}})}\\\\le c_{p,s}\\\\Vert P^s(x)\\\\Vert _{L_p({\\\\mathcal {M}})},\\\\quad 1&lt;p&lt;\\\\infty , \\\\end{aligned}$$</span></div></div><p>for every mean zero <i>x</i> and <span>\\\\(0&lt;s&lt;\\\\infty \\\\)</span>. By selecting <span>\\\\(s=1/2\\\\)</span>, one can recover the <i>p</i>-logarithmic Sobolev inequality whenever the Riesz transform is bounded. Our inequality applies to numerous concrete cases, including Poisson semigroups for free groups, the Ornstein-Uhlenbeck semigroup for mixed <i>Q</i>-gaussian von Neumann algebras, the free product for Ornstein-Uhlenbeck semigroups etc. This provides a unified approach for functional analysis form of logarithmic Sobolev inequalities in general noncommutative setting.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"405 11\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05145-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05145-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于作用于非交换概率空间 \(({\mathcal {M}},\tau )\) 的任意超收缩半群 \(\{e^{-tP}\}_{t\ge 0}\),对数 Sobolev 不等式成立:$$\begin{aligned}\Vert x\Vert _{L_p(\log L)^{ps}({\mathcal {M}})}\le c_{p,s}\Vert P^s(x)\Vert _{L_p({\mathcal {M}})},\quad 1<p<\infty , \end{aligned}$$对于每一个均值为零的 x 和\(0<s<\infty \)。通过选择 \(s=1/2\),只要里兹变换是有界的,就可以恢复 p对数索波列夫不等式。我们的不等式适用于许多具体情况,包括自由群的泊松半群、混合 Q 高斯冯诺伊曼代数的奥恩斯坦-乌伦贝克半群、奥恩斯坦-乌伦贝克半群的自由积等。这为对数索波列弗不等式在一般非交换背景下的函数分析形式提供了统一的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noncommutative Logarithmic Sobolev Inequalities

We show that the logarithmic Sobolev inequality holds for an arbitrary hypercontractive semigroup \(\{e^{-tP}\}_{t\ge 0}\) acting on a noncommutative probability space \(({\mathcal {M}},\tau )\):

$$\begin{aligned} \Vert x\Vert _{L_p(\log L)^{ps}({\mathcal {M}})}\le c_{p,s}\Vert P^s(x)\Vert _{L_p({\mathcal {M}})},\quad 1<p<\infty , \end{aligned}$$

for every mean zero x and \(0<s<\infty \). By selecting \(s=1/2\), one can recover the p-logarithmic Sobolev inequality whenever the Riesz transform is bounded. Our inequality applies to numerous concrete cases, including Poisson semigroups for free groups, the Ornstein-Uhlenbeck semigroup for mixed Q-gaussian von Neumann algebras, the free product for Ornstein-Uhlenbeck semigroups etc. This provides a unified approach for functional analysis form of logarithmic Sobolev inequalities in general noncommutative setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信