桥梁钢中的声波速度及其对超声波测试的影响

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Glenn Washer, Joshua Agbede, Kalpana Yadav, Robert Connor, Ryan Turnbull
{"title":"桥梁钢中的声波速度及其对超声波测试的影响","authors":"Glenn Washer,&nbsp;Joshua Agbede,&nbsp;Kalpana Yadav,&nbsp;Robert Connor,&nbsp;Ryan Turnbull","doi":"10.1007/s10921-024-01109-1","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasonic testing is utilized to ensure weld quality during the fabrication of steel bridges by identifying discontinuities that are classified as either acceptable or rejectable. The classification of a discontinuity can be affected by differences in the acoustic properties of the material under test and the reference standard used for calibration. Differences in wave velocity affect the refracted angle and amplitude of refracted shear waves. As a result, indications can be missed or incorrectly classified, or incorrectly located in the material. The objective of this research study was to characterize the acoustic wave velocities in a sample of contemporary steels to better understand the range over which velocities may vary for common steels. To address this objective, a series of velocity measurements have been conducted for shear waves propagating through different directions in steel plates of different strengths and reported manufacturing processes. The study also examines the loss of signal amplitude that results from changes in the refracted angle of shear waves used for the inspection of welds. Beam splitting that may occur in anisotropic materials and the potential impact on signal amplitudes is also presented. It was shown in the research that relatively small differences in velocity between the material under test and the reference standard cause a loss of sensitivity of the test. Data presented in the paper documents wave velocity and anisotropic ratios for a population of contemporary bridge steels used for the fabrication of steel bridges and an assessment of how velocity differences affect the amplitude of reflected shear waves.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10921-024-01109-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Acoustic Wave Velocities in Bridge Steels and the Effects on Ultrasonic Testing\",\"authors\":\"Glenn Washer,&nbsp;Joshua Agbede,&nbsp;Kalpana Yadav,&nbsp;Robert Connor,&nbsp;Ryan Turnbull\",\"doi\":\"10.1007/s10921-024-01109-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultrasonic testing is utilized to ensure weld quality during the fabrication of steel bridges by identifying discontinuities that are classified as either acceptable or rejectable. The classification of a discontinuity can be affected by differences in the acoustic properties of the material under test and the reference standard used for calibration. Differences in wave velocity affect the refracted angle and amplitude of refracted shear waves. As a result, indications can be missed or incorrectly classified, or incorrectly located in the material. The objective of this research study was to characterize the acoustic wave velocities in a sample of contemporary steels to better understand the range over which velocities may vary for common steels. To address this objective, a series of velocity measurements have been conducted for shear waves propagating through different directions in steel plates of different strengths and reported manufacturing processes. The study also examines the loss of signal amplitude that results from changes in the refracted angle of shear waves used for the inspection of welds. Beam splitting that may occur in anisotropic materials and the potential impact on signal amplitudes is also presented. It was shown in the research that relatively small differences in velocity between the material under test and the reference standard cause a loss of sensitivity of the test. Data presented in the paper documents wave velocity and anisotropic ratios for a population of contemporary bridge steels used for the fabrication of steel bridges and an assessment of how velocity differences affect the amplitude of reflected shear waves.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"43 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10921-024-01109-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-024-01109-1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01109-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

在钢结构桥梁的制造过程中,超声波测试可通过识别不连续性来确保焊接质量,不连续性可分为合格和不合格两种。被测材料的声学特性与用于校准的参考标准之间的差异会影响不连续性的分类。波速的差异会影响折射剪切波的折射角和振幅。因此,可能会遗漏或错误地分类指示,或错误地定位材料中的指示。这项研究的目的是确定当代钢材样本中声波速度的特征,以便更好地了解常见钢材的速度变化范围。为实现这一目标,我们对不同强度和制造工艺的钢板中不同方向传播的剪切波进行了一系列速度测量。研究还考察了用于检测焊缝的剪切波折射角变化所导致的信号振幅损失。还介绍了各向异性材料中可能出现的光束分裂及其对信号振幅的潜在影响。研究表明,被测材料与参考标准之间相对较小的速度差异会导致测试灵敏度下降。论文中提供的数据记录了大量用于制造钢桥的现代桥梁钢材的波速和各向异性比率,以及对速度差异如何影响反射剪切波振幅的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustic Wave Velocities in Bridge Steels and the Effects on Ultrasonic Testing

Ultrasonic testing is utilized to ensure weld quality during the fabrication of steel bridges by identifying discontinuities that are classified as either acceptable or rejectable. The classification of a discontinuity can be affected by differences in the acoustic properties of the material under test and the reference standard used for calibration. Differences in wave velocity affect the refracted angle and amplitude of refracted shear waves. As a result, indications can be missed or incorrectly classified, or incorrectly located in the material. The objective of this research study was to characterize the acoustic wave velocities in a sample of contemporary steels to better understand the range over which velocities may vary for common steels. To address this objective, a series of velocity measurements have been conducted for shear waves propagating through different directions in steel plates of different strengths and reported manufacturing processes. The study also examines the loss of signal amplitude that results from changes in the refracted angle of shear waves used for the inspection of welds. Beam splitting that may occur in anisotropic materials and the potential impact on signal amplitudes is also presented. It was shown in the research that relatively small differences in velocity between the material under test and the reference standard cause a loss of sensitivity of the test. Data presented in the paper documents wave velocity and anisotropic ratios for a population of contemporary bridge steels used for the fabrication of steel bridges and an assessment of how velocity differences affect the amplitude of reflected shear waves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信