{"title":"无 KAM 的可再现性","authors":"F. Argentieri, B. Fayad","doi":"10.1007/s00220-024-05105-4","DOIUrl":null,"url":null,"abstract":"<div><p>We prove rotations-reducibility for close to constant quasi-periodic <span>\\(SL(2,\\mathbb {R})\\)</span> cocycles in one frequency in the finite regularity and smooth cases, and derive some applications to quasi-periodic Schrödinger operators.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05105-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Reducibility Without KAM\",\"authors\":\"F. Argentieri, B. Fayad\",\"doi\":\"10.1007/s00220-024-05105-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove rotations-reducibility for close to constant quasi-periodic <span>\\\\(SL(2,\\\\mathbb {R})\\\\)</span> cocycles in one frequency in the finite regularity and smooth cases, and derive some applications to quasi-periodic Schrödinger operators.\\n</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"405 11\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-05105-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05105-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05105-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
We prove rotations-reducibility for close to constant quasi-periodic \(SL(2,\mathbb {R})\) cocycles in one frequency in the finite regularity and smooth cases, and derive some applications to quasi-periodic Schrödinger operators.
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.