圆多边形中台球的混沌特性

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Andrew Clarke, Rafael Ramírez-Ros
{"title":"圆多边形中台球的混沌特性","authors":"Andrew Clarke,&nbsp;Rafael Ramírez-Ros","doi":"10.1007/s00220-024-05113-4","DOIUrl":null,"url":null,"abstract":"<div><p>We study billiards in domains enclosed by circular polygons. These are closed <span>\\(C^1\\)</span> strictly convex curves formed by finitely many circular arcs. We prove the existence of a set in phase space, corresponding to generic sliding trajectories close enough to the boundary of the domain, in which the return billiard dynamics is semiconjugate to a transitive subshift on infinitely many symbols that contains the full <i>N</i>-shift as a topological factor for any <span>\\(N \\in {\\mathbb {N}}\\)</span>, so it has infinite topological entropy. We prove the existence of uncountably many asymptotic generic sliding trajectories approaching the boundary with optimal uniform linear speed, give an explicit exponentially big (in <i>q</i>) lower bound on the number of <i>q</i>-periodic trajectories as <span>\\(q \\rightarrow \\infty \\)</span>, and present an unusual property of the length spectrum. Our proofs are entirely analytical.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chaotic Properties of Billiards in Circular Polygons\",\"authors\":\"Andrew Clarke,&nbsp;Rafael Ramírez-Ros\",\"doi\":\"10.1007/s00220-024-05113-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study billiards in domains enclosed by circular polygons. These are closed <span>\\\\(C^1\\\\)</span> strictly convex curves formed by finitely many circular arcs. We prove the existence of a set in phase space, corresponding to generic sliding trajectories close enough to the boundary of the domain, in which the return billiard dynamics is semiconjugate to a transitive subshift on infinitely many symbols that contains the full <i>N</i>-shift as a topological factor for any <span>\\\\(N \\\\in {\\\\mathbb {N}}\\\\)</span>, so it has infinite topological entropy. We prove the existence of uncountably many asymptotic generic sliding trajectories approaching the boundary with optimal uniform linear speed, give an explicit exponentially big (in <i>q</i>) lower bound on the number of <i>q</i>-periodic trajectories as <span>\\\\(q \\\\rightarrow \\\\infty \\\\)</span>, and present an unusual property of the length spectrum. Our proofs are entirely analytical.\\n</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"405 11\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05113-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05113-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究圆多边形围成的域中的台球。这些是由有限多圆弧形成的封闭的严格凸曲线。我们证明了在相空间中存在一个集合,对应于足够接近域边界的通用滑动轨迹,在这个集合中,返回台球动力学半共轭于无限多符号上的传递子位移,对于任何 \(N \in {\mathbb {N}}\) 来说,它包含作为拓扑因子的全 N 位移,因此它具有无限拓扑熵。我们证明了以最优匀速直线速度接近边界的不可计数的渐近通用滑动轨迹的存在,给出了q周期轨迹数量的指数大(以q为单位)下限(\(q \rightarrow \infty \)),并提出了长度谱的一个不寻常的性质。我们的证明完全是分析性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chaotic Properties of Billiards in Circular Polygons

Chaotic Properties of Billiards in Circular Polygons

We study billiards in domains enclosed by circular polygons. These are closed \(C^1\) strictly convex curves formed by finitely many circular arcs. We prove the existence of a set in phase space, corresponding to generic sliding trajectories close enough to the boundary of the domain, in which the return billiard dynamics is semiconjugate to a transitive subshift on infinitely many symbols that contains the full N-shift as a topological factor for any \(N \in {\mathbb {N}}\), so it has infinite topological entropy. We prove the existence of uncountably many asymptotic generic sliding trajectories approaching the boundary with optimal uniform linear speed, give an explicit exponentially big (in q) lower bound on the number of q-periodic trajectories as \(q \rightarrow \infty \), and present an unusual property of the length spectrum. Our proofs are entirely analytical.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信