环结、代数和相对渐近权乘的彩色不变式

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Shashank Kanade
{"title":"环结、代数和相对渐近权乘的彩色不变式","authors":"Shashank Kanade","doi":"10.1007/s00220-024-05130-3","DOIUrl":null,"url":null,"abstract":"<div><p>We study coloured invariants of torus knots <span>\\(T(p,p')\\)</span> (where <span>\\(p,p'\\)</span> are coprime positive integers). When the colouring Lie algebra is simply-laced, and when <span>\\(p,p'\\ge h^\\vee \\)</span>, we use the representation theory of the corresponding principal affine <img> algebras to understand the trailing monomials of the coloured invariants. In these cases, we show that the appropriate limits of the renormalized invariants are equal to the characters of certain <img> algebra modules (up to some factors); this result on limits rests on a purely Lie-algebraic conjecture on asymptotic weight multiplicities which we verify in some examples.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coloured Invariants of Torus Knots, Algebras, and Relative Asymptotic Weight Multiplicities\",\"authors\":\"Shashank Kanade\",\"doi\":\"10.1007/s00220-024-05130-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study coloured invariants of torus knots <span>\\\\(T(p,p')\\\\)</span> (where <span>\\\\(p,p'\\\\)</span> are coprime positive integers). When the colouring Lie algebra is simply-laced, and when <span>\\\\(p,p'\\\\ge h^\\\\vee \\\\)</span>, we use the representation theory of the corresponding principal affine <img> algebras to understand the trailing monomials of the coloured invariants. In these cases, we show that the appropriate limits of the renormalized invariants are equal to the characters of certain <img> algebra modules (up to some factors); this result on limits rests on a purely Lie-algebraic conjecture on asymptotic weight multiplicities which we verify in some examples.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"405 11\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05130-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05130-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究环结的彩色不变式(T(p,p'))(其中\(p,p'\)是共正整数)。当着色的李代数是简单线性代数时,当 \(p,p'\ge h^\vee \)时,我们使用相应的主仿射代数的表示理论来理解着色不变式的尾部单项式。在这些情况下,我们证明重规范化不变式的适当极限等于某些代数模块的特征(直到某些因子);关于极限的这一结果基于关于渐近权乘的纯粹李代数猜想,我们在一些例子中验证了这一猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coloured Invariants of Torus Knots, Algebras, and Relative Asymptotic Weight Multiplicities

We study coloured invariants of torus knots \(T(p,p')\) (where \(p,p'\) are coprime positive integers). When the colouring Lie algebra is simply-laced, and when \(p,p'\ge h^\vee \), we use the representation theory of the corresponding principal affine algebras to understand the trailing monomials of the coloured invariants. In these cases, we show that the appropriate limits of the renormalized invariants are equal to the characters of certain algebra modules (up to some factors); this result on limits rests on a purely Lie-algebraic conjecture on asymptotic weight multiplicities which we verify in some examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信