Onsager-Machlup 函数用于(\text {SLE}_{\kappa }\) 循环措施

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Marco Carfagnini, Yilin Wang
{"title":"Onsager-Machlup 函数用于(\\text {SLE}_{\\kappa }\\) 循环措施","authors":"Marco Carfagnini,&nbsp;Yilin Wang","doi":"10.1007/s00220-024-05071-x","DOIUrl":null,"url":null,"abstract":"<div><p>We relate two ways to renormalize the Brownian loop measure on the Riemann sphere. One by considering the Brownian loop measure on the sphere minus a small disk, known as the normalized Brownian loop measure; the other by taking the measure on simple loops induced by the outer boundary of the Brownian loops, known as Werner’s measure. This result allows us to interpret the Loewner energy as an Onsager–Machlup functional for SLE<span>\\(_\\kappa \\)</span> loop measure for any fixed <span>\\(\\kappa \\in (0, 4]\\)</span>, and more generally, for any Malliavin–Kontsevich–Suhov loop measure of the same central charge.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Onsager–Machlup Functional for \\\\(\\\\text {SLE}_{\\\\kappa }\\\\) Loop Measures\",\"authors\":\"Marco Carfagnini,&nbsp;Yilin Wang\",\"doi\":\"10.1007/s00220-024-05071-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We relate two ways to renormalize the Brownian loop measure on the Riemann sphere. One by considering the Brownian loop measure on the sphere minus a small disk, known as the normalized Brownian loop measure; the other by taking the measure on simple loops induced by the outer boundary of the Brownian loops, known as Werner’s measure. This result allows us to interpret the Loewner energy as an Onsager–Machlup functional for SLE<span>\\\\(_\\\\kappa \\\\)</span> loop measure for any fixed <span>\\\\(\\\\kappa \\\\in (0, 4]\\\\)</span>, and more generally, for any Malliavin–Kontsevich–Suhov loop measure of the same central charge.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"405 11\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05071-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05071-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们将黎曼球上的布朗环测量归一化的两种方法联系起来。一种是考虑球面上的布朗环测量减去一个小圆盘,称为归一化布朗环测量;另一种是考虑布朗环的外边界诱导的简单环测量,称为韦纳测量。这个结果让我们可以把洛夫能解释为对于任意固定的(0, 4]\)SLE\(_\kappa \)环度量的Onsager-Machlup函数,更一般地说,对于相同中心电荷的任意Malliavin-Kontsevich-Suhov环度量的Onsager-Machlup函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Onsager–Machlup Functional for \(\text {SLE}_{\kappa }\) Loop Measures

We relate two ways to renormalize the Brownian loop measure on the Riemann sphere. One by considering the Brownian loop measure on the sphere minus a small disk, known as the normalized Brownian loop measure; the other by taking the measure on simple loops induced by the outer boundary of the Brownian loops, known as Werner’s measure. This result allows us to interpret the Loewner energy as an Onsager–Machlup functional for SLE\(_\kappa \) loop measure for any fixed \(\kappa \in (0, 4]\), and more generally, for any Malliavin–Kontsevich–Suhov loop measure of the same central charge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信