广义熵累积

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Tony Metger, Omar Fawzi, David Sutter, Renato Renner
{"title":"广义熵累积","authors":"Tony Metger,&nbsp;Omar Fawzi,&nbsp;David Sutter,&nbsp;Renato Renner","doi":"10.1007/s00220-024-05121-4","DOIUrl":null,"url":null,"abstract":"<div><p>Consider a sequential process in which each step outputs a system <span>\\(A_i\\)</span> and updates a side information register <i>E</i>. We prove that if this process satisfies a natural “non-signalling” condition between past outputs and future side information, the min-entropy of the outputs <span>\\(A_1, \\dots , A_n\\)</span> conditioned on the side information <i>E</i> at the end of the process can be bounded from below by a sum of von Neumann entropies associated with the individual steps. This is a generalisation of the entropy accumulation theorem (EAT) (Dupuis et al. in Commun Math Phys 379: 867–913, 2020), which deals with a more restrictive model of side information: there, past side information cannot be updated in subsequent rounds, and newly generated side information has to satisfy a Markov condition. Due to its more general model of side-information, our generalised EAT can be applied more easily and to a broader range of cryptographic protocols. As examples, we give the first multi-round security proof for blind randomness expansion and a simplified analysis of the E91 QKD protocol. The proof of our generalised EAT relies on a new variant of Uhlmann’s theorem and new chain rules for the Rényi divergence and entropy, which might be of independent interest.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05121-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Generalised Entropy Accumulation\",\"authors\":\"Tony Metger,&nbsp;Omar Fawzi,&nbsp;David Sutter,&nbsp;Renato Renner\",\"doi\":\"10.1007/s00220-024-05121-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Consider a sequential process in which each step outputs a system <span>\\\\(A_i\\\\)</span> and updates a side information register <i>E</i>. We prove that if this process satisfies a natural “non-signalling” condition between past outputs and future side information, the min-entropy of the outputs <span>\\\\(A_1, \\\\dots , A_n\\\\)</span> conditioned on the side information <i>E</i> at the end of the process can be bounded from below by a sum of von Neumann entropies associated with the individual steps. This is a generalisation of the entropy accumulation theorem (EAT) (Dupuis et al. in Commun Math Phys 379: 867–913, 2020), which deals with a more restrictive model of side information: there, past side information cannot be updated in subsequent rounds, and newly generated side information has to satisfy a Markov condition. Due to its more general model of side-information, our generalised EAT can be applied more easily and to a broader range of cryptographic protocols. As examples, we give the first multi-round security proof for blind randomness expansion and a simplified analysis of the E91 QKD protocol. The proof of our generalised EAT relies on a new variant of Uhlmann’s theorem and new chain rules for the Rényi divergence and entropy, which might be of independent interest.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"405 11\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-05121-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05121-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05121-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果这个过程在过去的输出和未来的侧信息之间满足一个自然的 "非信号 "条件,那么在过程结束时,以侧信息E为条件的输出\(A_1, \dots , A_n\)的最小熵可以由与各个步骤相关的冯-诺依曼熵之和从下往上限定。这是熵累积定理(EAT)(Dupuis 等人,发表于 Commun Math Phys 379: 867-913, 2020)的广义化,它处理的是一种限制性更强的边信息模型:在那里,过去的边信息不能在后续回合中更新,新生成的边信息必须满足马尔可夫条件。由于我们的广义 EAT 采用了更通用的边信息模型,因此可以更容易地应用于更广泛的加密协议。举例来说,我们给出了盲随机性扩展的第一个多轮安全证明,以及对 E91 QKD 协议的简化分析。我们的广义 EAT 的证明依赖于乌尔曼定理的一个新变体以及雷尼发散和熵的新链式规则,这可能会引起人们的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalised Entropy Accumulation

Consider a sequential process in which each step outputs a system \(A_i\) and updates a side information register E. We prove that if this process satisfies a natural “non-signalling” condition between past outputs and future side information, the min-entropy of the outputs \(A_1, \dots , A_n\) conditioned on the side information E at the end of the process can be bounded from below by a sum of von Neumann entropies associated with the individual steps. This is a generalisation of the entropy accumulation theorem (EAT) (Dupuis et al. in Commun Math Phys 379: 867–913, 2020), which deals with a more restrictive model of side information: there, past side information cannot be updated in subsequent rounds, and newly generated side information has to satisfy a Markov condition. Due to its more general model of side-information, our generalised EAT can be applied more easily and to a broader range of cryptographic protocols. As examples, we give the first multi-round security proof for blind randomness expansion and a simplified analysis of the E91 QKD protocol. The proof of our generalised EAT relies on a new variant of Uhlmann’s theorem and new chain rules for the Rényi divergence and entropy, which might be of independent interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信