在热力学稳定的层状结构氧化物中实现 Mg2+ 插层†。

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2024-10-14 DOI:10.1039/D4RA03923H
Junhao Zhang, Haotian Guan, Jili Yue, Yangfan Lu, Qian Li, Guangsheng Huang, Jingfeng Wang, Baihua Qu and Fusheng Pan
{"title":"在热力学稳定的层状结构氧化物中实现 Mg2+ 插层†。","authors":"Junhao Zhang, Haotian Guan, Jili Yue, Yangfan Lu, Qian Li, Guangsheng Huang, Jingfeng Wang, Baihua Qu and Fusheng Pan","doi":"10.1039/D4RA03923H","DOIUrl":null,"url":null,"abstract":"<p >Magnesium batteries have emerged as one of the considerable choices for next-generation batteries. Oxide compounds have attracted great attention as cathodes for magnesium batteries because of their high output voltages and ease of synthesis. However, a majority of the reported results are based on metastable nanoscale oxide materials. This study puts forward a thermodynamically stable layer-structured oxide K<small><sub>0.5</sub></small>MnO<small><sub>2</sub></small> with an enlarged lattice spacing as a model cathode material employing optimized electrolytes, enabling Mg<small><sup>2+</sup></small> intercalation into the K<small><sub>0.5</sub></small>MnO<small><sub>2</sub></small> framework in a real magnesium battery directly using Mg foil as the anode. First-principles calculations implied that the enlarged layer spacing could decrease the migration energy barrier of Mg<small><sup>2+</sup></small> in the layered oxide. This work can pave the way to understanding the fundamental intercalation behavior of Mg<small><sup>2+</sup></small> in magnesium batteries.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra03923h?page=search","citationCount":"0","resultStr":"{\"title\":\"Realization of Mg2+ intercalation in a thermodynamically stable layer-structured oxide†\",\"authors\":\"Junhao Zhang, Haotian Guan, Jili Yue, Yangfan Lu, Qian Li, Guangsheng Huang, Jingfeng Wang, Baihua Qu and Fusheng Pan\",\"doi\":\"10.1039/D4RA03923H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Magnesium batteries have emerged as one of the considerable choices for next-generation batteries. Oxide compounds have attracted great attention as cathodes for magnesium batteries because of their high output voltages and ease of synthesis. However, a majority of the reported results are based on metastable nanoscale oxide materials. This study puts forward a thermodynamically stable layer-structured oxide K<small><sub>0.5</sub></small>MnO<small><sub>2</sub></small> with an enlarged lattice spacing as a model cathode material employing optimized electrolytes, enabling Mg<small><sup>2+</sup></small> intercalation into the K<small><sub>0.5</sub></small>MnO<small><sub>2</sub></small> framework in a real magnesium battery directly using Mg foil as the anode. First-principles calculations implied that the enlarged layer spacing could decrease the migration energy barrier of Mg<small><sup>2+</sup></small> in the layered oxide. This work can pave the way to understanding the fundamental intercalation behavior of Mg<small><sup>2+</sup></small> in magnesium batteries.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra03923h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra03923h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra03923h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

镁电池已成为下一代电池的重要选择之一。氧化物化合物因其输出电压高、易于合成而作为镁电池的阴极引起了极大的关注。然而,大多数报道的结果都是基于可蜕变的纳米级氧化物材料。本研究提出了一种具有扩大晶格间距的热力学稳定层状结构氧化物 K0.5MnO2,将其作为模型阴极材料,并采用优化电解质,使 Mg2+ 插层进入 K0.5MnO2 框架,在实际镁电池中直接使用镁箔作为阳极。第一性原理计算表明,扩大层间距可降低 Mg2+ 在层状氧化物中的迁移能垒。这项研究为了解镁电池中 Mg2+ 的基本插层行为铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realization of Mg2+ intercalation in a thermodynamically stable layer-structured oxide†

Magnesium batteries have emerged as one of the considerable choices for next-generation batteries. Oxide compounds have attracted great attention as cathodes for magnesium batteries because of their high output voltages and ease of synthesis. However, a majority of the reported results are based on metastable nanoscale oxide materials. This study puts forward a thermodynamically stable layer-structured oxide K0.5MnO2 with an enlarged lattice spacing as a model cathode material employing optimized electrolytes, enabling Mg2+ intercalation into the K0.5MnO2 framework in a real magnesium battery directly using Mg foil as the anode. First-principles calculations implied that the enlarged layer spacing could decrease the migration energy barrier of Mg2+ in the layered oxide. This work can pave the way to understanding the fundamental intercalation behavior of Mg2+ in magnesium batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信