基于聚甲基丙烯酸甲酯单链纳米颗粒的全聚合物纳米复合材料中的聚环氧乙烷结晶动力学

IF 4.7 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yini Fang, Jiankang Liu, Zeyu Zhu, Zhijian Lv and Yu Lin*, 
{"title":"基于聚甲基丙烯酸甲酯单链纳米颗粒的全聚合物纳米复合材料中的聚环氧乙烷结晶动力学","authors":"Yini Fang,&nbsp;Jiankang Liu,&nbsp;Zeyu Zhu,&nbsp;Zhijian Lv and Yu Lin*,&nbsp;","doi":"10.1021/acsapm.4c0229710.1021/acsapm.4c02297","DOIUrl":null,"url":null,"abstract":"<p >Understanding how single-chain nanoparticles (SCNPs) affect all-polymer nanocomposite performance is of crucial importance to tailor such materials. In this work, the crystallization kinetics and mechanical properties of all-polymer nanocomposites consisting of poly(methyl methacrylate) (PMMA) SCNPs dispersed in a poly(ethylene oxide) (PEO) matrix are systematically investigated. The crystallization behaviors of PEO are suppressed by the incorporation of either linear precursors or SCNPs. The nonisothermal crystallization measurements show the reductions in crystallization temperature, melting temperature, and crystallinity of PEO with increasing linear precursor or SCNP content. The results of isothermal crystallization reveal that the relative crystallinity, equilibrium melting temperature, and crystallization rate of linear blends and all-polymer nanocomposites are lower than those of neat PEO, and the addition of linear precursors or SCNPs changes the growth dimension of PEO crystals. Compared with linear blends, all-polymer nanocomposites exhibit weaker suppression on the crystallization kinetics of PEO. Dielectric relaxation results confirm less restriction on the motion of PEO segments and faster segmental dynamics in all-polymer nanocomposites, owing to the weaker interactions between SCNPs and PEO matrix resulting from the crumpled globular morphologies and small size feature of SCNPs. Moreover, all-polymer nanocomposites present higher tensile modulus and elongation at break, indicating the simultaneous strengthening and toughening effect of SCNPs. Such lower crystallinity, faster segmental relaxation, and excellent mechanical properties of all-polymer nanocomposites provide promising candidates for solid polymer electrolyte applications.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"6 19","pages":"12217–12227 12217–12227"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystallization Kinetics of Poly(ethylene oxide) in All-Polymer Nanocomposites Based on Poly(methyl methacrylate) Single-Chain Nanoparticles\",\"authors\":\"Yini Fang,&nbsp;Jiankang Liu,&nbsp;Zeyu Zhu,&nbsp;Zhijian Lv and Yu Lin*,&nbsp;\",\"doi\":\"10.1021/acsapm.4c0229710.1021/acsapm.4c02297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Understanding how single-chain nanoparticles (SCNPs) affect all-polymer nanocomposite performance is of crucial importance to tailor such materials. In this work, the crystallization kinetics and mechanical properties of all-polymer nanocomposites consisting of poly(methyl methacrylate) (PMMA) SCNPs dispersed in a poly(ethylene oxide) (PEO) matrix are systematically investigated. The crystallization behaviors of PEO are suppressed by the incorporation of either linear precursors or SCNPs. The nonisothermal crystallization measurements show the reductions in crystallization temperature, melting temperature, and crystallinity of PEO with increasing linear precursor or SCNP content. The results of isothermal crystallization reveal that the relative crystallinity, equilibrium melting temperature, and crystallization rate of linear blends and all-polymer nanocomposites are lower than those of neat PEO, and the addition of linear precursors or SCNPs changes the growth dimension of PEO crystals. Compared with linear blends, all-polymer nanocomposites exhibit weaker suppression on the crystallization kinetics of PEO. Dielectric relaxation results confirm less restriction on the motion of PEO segments and faster segmental dynamics in all-polymer nanocomposites, owing to the weaker interactions between SCNPs and PEO matrix resulting from the crumpled globular morphologies and small size feature of SCNPs. Moreover, all-polymer nanocomposites present higher tensile modulus and elongation at break, indicating the simultaneous strengthening and toughening effect of SCNPs. Such lower crystallinity, faster segmental relaxation, and excellent mechanical properties of all-polymer nanocomposites provide promising candidates for solid polymer electrolyte applications.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"6 19\",\"pages\":\"12217–12227 12217–12227\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsapm.4c02297\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c02297","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解单链纳米粒子(SCNPs)如何影响全聚合物纳米复合材料的性能对于定制此类材料至关重要。在这项工作中,系统地研究了由分散在聚环氧乙烷(PEO)基体中的聚甲基丙烯酸甲酯(PMMA)SCNPs 组成的全聚合物纳米复合材料的结晶动力学和力学性能。线性前体或 SCNPs 的加入抑制了 PEO 的结晶行为。非等温结晶测量结果表明,随着线性前驱体或 SCNP 含量的增加,PEO 的结晶温度、熔化温度和结晶度都会降低。等温结晶结果表明,线性共混物和全聚合物纳米复合材料的相对结晶度、平衡熔化温度和结晶速率均低于纯 PEO,而且线性前体或 SCNP 的添加会改变 PEO 晶体的生长尺寸。与线性混合物相比,全聚合物纳米复合材料对 PEO 结晶动力学的抑制较弱。介电弛豫结果表明,全聚合物纳米复合材料对 PEO 片段运动的限制较小,片段动力学速度较快,这是因为 SCNPs 的皱缩球状形态和小尺寸特征导致 SCNPs 与 PEO 基体之间的相互作用较弱。此外,全聚合物纳米复合材料具有更高的拉伸模量和断裂伸长率,表明 SCNPs 同时具有增强和增韧作用。全聚合物纳米复合材料较低的结晶度、较快的段弛豫和优异的机械性能为固体聚合物电解质的应用提供了广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crystallization Kinetics of Poly(ethylene oxide) in All-Polymer Nanocomposites Based on Poly(methyl methacrylate) Single-Chain Nanoparticles

Crystallization Kinetics of Poly(ethylene oxide) in All-Polymer Nanocomposites Based on Poly(methyl methacrylate) Single-Chain Nanoparticles

Understanding how single-chain nanoparticles (SCNPs) affect all-polymer nanocomposite performance is of crucial importance to tailor such materials. In this work, the crystallization kinetics and mechanical properties of all-polymer nanocomposites consisting of poly(methyl methacrylate) (PMMA) SCNPs dispersed in a poly(ethylene oxide) (PEO) matrix are systematically investigated. The crystallization behaviors of PEO are suppressed by the incorporation of either linear precursors or SCNPs. The nonisothermal crystallization measurements show the reductions in crystallization temperature, melting temperature, and crystallinity of PEO with increasing linear precursor or SCNP content. The results of isothermal crystallization reveal that the relative crystallinity, equilibrium melting temperature, and crystallization rate of linear blends and all-polymer nanocomposites are lower than those of neat PEO, and the addition of linear precursors or SCNPs changes the growth dimension of PEO crystals. Compared with linear blends, all-polymer nanocomposites exhibit weaker suppression on the crystallization kinetics of PEO. Dielectric relaxation results confirm less restriction on the motion of PEO segments and faster segmental dynamics in all-polymer nanocomposites, owing to the weaker interactions between SCNPs and PEO matrix resulting from the crumpled globular morphologies and small size feature of SCNPs. Moreover, all-polymer nanocomposites present higher tensile modulus and elongation at break, indicating the simultaneous strengthening and toughening effect of SCNPs. Such lower crystallinity, faster segmental relaxation, and excellent mechanical properties of all-polymer nanocomposites provide promising candidates for solid polymer electrolyte applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信