利用液相原子层沉积技术在氧化镁上逐个原子设计用于二氧化碳加氢的铜/氧化锆团簇

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL
Seongmin Jin, Choah Kwon, Aram Bugaev, Bartu Karakurt, Yu-Cheng Lin, Louisa Savereide, Liping Zhong, Victor Boureau, Olga Safonova, Sangtae Kim, Jeremy S. Luterbacher
{"title":"利用液相原子层沉积技术在氧化镁上逐个原子设计用于二氧化碳加氢的铜/氧化锆团簇","authors":"Seongmin Jin, Choah Kwon, Aram Bugaev, Bartu Karakurt, Yu-Cheng Lin, Louisa Savereide, Liping Zhong, Victor Boureau, Olga Safonova, Sangtae Kim, Jeremy S. Luterbacher","doi":"10.1038/s41929-024-01236-y","DOIUrl":null,"url":null,"abstract":"<p>The difficulty of synthesizing uniform atomically precise active sites limits our ability to engineer increasingly more active heterogeneous catalysts for the hydrogenation of CO<sub>2</sub> to methanol. Here we design Cu/ZrO<sub><i>x</i></sub> clusters on MgO with near atomic precision for CO<sub>2</sub> hydrogenation using a liquid-phase atomic layer deposition method. The controlled cluster structure modulates the binding strength of CO<sub>2</sub> and moderately stabilizes monodentate formate—an essential reaction intermediate for methanol production. We achieved a methanol selectivity of 100 and 76.7% at 200 and 250 °C, respectively and a methanol productivity that was one to two orders of magnitude higher than when the same catalysts were prepared by impregnation. Ab initio computations show that Cu/ZrO<sub><i>x</i></sub> clusters can tune the oxidation of Zr, which controls the stability of reaction intermediates on the catalyst. Our approach demonstrates the potential of precise atomic control of catalytic clusters to improve catalytic productivity.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":null,"pages":null},"PeriodicalIF":42.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atom-by-atom design of Cu/ZrOx clusters on MgO for CO2 hydrogenation using liquid-phase atomic layer deposition\",\"authors\":\"Seongmin Jin, Choah Kwon, Aram Bugaev, Bartu Karakurt, Yu-Cheng Lin, Louisa Savereide, Liping Zhong, Victor Boureau, Olga Safonova, Sangtae Kim, Jeremy S. Luterbacher\",\"doi\":\"10.1038/s41929-024-01236-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The difficulty of synthesizing uniform atomically precise active sites limits our ability to engineer increasingly more active heterogeneous catalysts for the hydrogenation of CO<sub>2</sub> to methanol. Here we design Cu/ZrO<sub><i>x</i></sub> clusters on MgO with near atomic precision for CO<sub>2</sub> hydrogenation using a liquid-phase atomic layer deposition method. The controlled cluster structure modulates the binding strength of CO<sub>2</sub> and moderately stabilizes monodentate formate—an essential reaction intermediate for methanol production. We achieved a methanol selectivity of 100 and 76.7% at 200 and 250 °C, respectively and a methanol productivity that was one to two orders of magnitude higher than when the same catalysts were prepared by impregnation. Ab initio computations show that Cu/ZrO<sub><i>x</i></sub> clusters can tune the oxidation of Zr, which controls the stability of reaction intermediates on the catalyst. Our approach demonstrates the potential of precise atomic control of catalytic clusters to improve catalytic productivity.</p><figure></figure>\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s41929-024-01236-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-024-01236-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于难以合成原子精度一致的活性位点,限制了我们设计活性越来越高的异质催化剂将二氧化碳氢化为甲醇的能力。在这里,我们采用液相原子层沉积方法,在氧化镁上设计了接近原子精度的铜/氧化锆团簇,用于二氧化碳加氢。可控的团簇结构调节了 CO2 的结合强度,并适度稳定了单齿形式--甲醇生产的重要反应中间体。在 200 ℃ 和 250 ℃ 条件下,我们分别获得了 100% 和 76.7% 的甲醇选择性,甲醇生产率比通过浸渍法制备的相同催化剂高出一到两个数量级。Ab initio 计算表明,Cu/ZrOx 团簇可以调节 Zr 的氧化,从而控制催化剂上反应中间产物的稳定性。我们的方法证明了对催化剂团簇进行精确原子控制以提高催化生产率的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Atom-by-atom design of Cu/ZrOx clusters on MgO for CO2 hydrogenation using liquid-phase atomic layer deposition

Atom-by-atom design of Cu/ZrOx clusters on MgO for CO2 hydrogenation using liquid-phase atomic layer deposition

The difficulty of synthesizing uniform atomically precise active sites limits our ability to engineer increasingly more active heterogeneous catalysts for the hydrogenation of CO2 to methanol. Here we design Cu/ZrOx clusters on MgO with near atomic precision for CO2 hydrogenation using a liquid-phase atomic layer deposition method. The controlled cluster structure modulates the binding strength of CO2 and moderately stabilizes monodentate formate—an essential reaction intermediate for methanol production. We achieved a methanol selectivity of 100 and 76.7% at 200 and 250 °C, respectively and a methanol productivity that was one to two orders of magnitude higher than when the same catalysts were prepared by impregnation. Ab initio computations show that Cu/ZrOx clusters can tune the oxidation of Zr, which controls the stability of reaction intermediates on the catalyst. Our approach demonstrates the potential of precise atomic control of catalytic clusters to improve catalytic productivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信