Clara Schramm, Dennis Birkner, Sebastian Schneider, Steffen Marx
{"title":"将正常模式节点作为弯曲疲劳试验共振测试设备支撑位置的实验研究","authors":"Clara Schramm, Dennis Birkner, Sebastian Schneider, Steffen Marx","doi":"10.1111/ffe.14412","DOIUrl":null,"url":null,"abstract":"<p>Large-scale fatigue testing is very important to the research on scale effects, which occur in large cyclic loaded structures, such as wind turbine towers. However, such experimental testing has a very high energy consumption. As an efficient alternative, this paper presents a new resonant testing facility for large-scale specimens under cyclic bending loads. The facility works as a 4-point bending test, in which the specimen is supported in the nodes of its first normal bending mode, where theoretically no reaction forces occur. Two counter-rotating imbalance motors with excitation frequencies near resonance generate a harmonic force acting on the specimen. Experimental trial fatigue tests on a steel pipe as a specimen were carried out, in order to validate the new testing setup. A great decrease in the support forces was reached by placing the supports at the normal mode nodes. Additionally, the behavior of the support forces under varying positions and excitation frequencies was also investigated. In summary, the resonant testing method combined with the supports at the normal mode nodes offers an efficient and energy-saving testing setup for large-scale fatigue tests.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 11","pages":"4214-4227"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14412","citationCount":"0","resultStr":"{\"title\":\"Experimental investigations on normal mode nodes as support positions of a resonant testing facility for bending fatigue tests\",\"authors\":\"Clara Schramm, Dennis Birkner, Sebastian Schneider, Steffen Marx\",\"doi\":\"10.1111/ffe.14412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Large-scale fatigue testing is very important to the research on scale effects, which occur in large cyclic loaded structures, such as wind turbine towers. However, such experimental testing has a very high energy consumption. As an efficient alternative, this paper presents a new resonant testing facility for large-scale specimens under cyclic bending loads. The facility works as a 4-point bending test, in which the specimen is supported in the nodes of its first normal bending mode, where theoretically no reaction forces occur. Two counter-rotating imbalance motors with excitation frequencies near resonance generate a harmonic force acting on the specimen. Experimental trial fatigue tests on a steel pipe as a specimen were carried out, in order to validate the new testing setup. A great decrease in the support forces was reached by placing the supports at the normal mode nodes. Additionally, the behavior of the support forces under varying positions and excitation frequencies was also investigated. In summary, the resonant testing method combined with the supports at the normal mode nodes offers an efficient and energy-saving testing setup for large-scale fatigue tests.</p>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"47 11\",\"pages\":\"4214-4227\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14412\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14412\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14412","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental investigations on normal mode nodes as support positions of a resonant testing facility for bending fatigue tests
Large-scale fatigue testing is very important to the research on scale effects, which occur in large cyclic loaded structures, such as wind turbine towers. However, such experimental testing has a very high energy consumption. As an efficient alternative, this paper presents a new resonant testing facility for large-scale specimens under cyclic bending loads. The facility works as a 4-point bending test, in which the specimen is supported in the nodes of its first normal bending mode, where theoretically no reaction forces occur. Two counter-rotating imbalance motors with excitation frequencies near resonance generate a harmonic force acting on the specimen. Experimental trial fatigue tests on a steel pipe as a specimen were carried out, in order to validate the new testing setup. A great decrease in the support forces was reached by placing the supports at the normal mode nodes. Additionally, the behavior of the support forces under varying positions and excitation frequencies was also investigated. In summary, the resonant testing method combined with the supports at the normal mode nodes offers an efficient and energy-saving testing setup for large-scale fatigue tests.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.