{"title":"通过搅拌摩擦焊连接的 AZ31 镁合金的低循环疲劳行为","authors":"Murat Türkan, Özler Karakaş, Filippo Berto","doi":"10.1111/ffe.14411","DOIUrl":null,"url":null,"abstract":"<p>This study, aims to weld the 5.2 mm thick AZ31 magnesium alloy with conventional friction stir welding at the highest joining efficiency. As a result of the experiments, 88% joining efficiency in tensile strength has been obtained at 1250 rpm, 400 mm.min<sup>−1</sup> welding parameter. As a result of micro–macrostructure photographic examinations of the samples joined with these parameters, it is seen that the joining is fully realized. Samples joined with these parameters have been used in fatigue tests. According to the strain-controlled low cycle fatigue test results performed on welded and base metal samples, the base metal samples have exceeded the 50,000-cycle limit without failure, with an elongation rate of 0.3%, and the welded samples with an elongation rate of 0.2%. Low cycle fatigue parameters of welded and base metal samples have been obtained according to the Coffin-Manson-Basquin equation.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 11","pages":"4165-4175"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14411","citationCount":"0","resultStr":"{\"title\":\"Low cycle fatigue behavior of AZ31 magnesium alloy joined by friction stir welding\",\"authors\":\"Murat Türkan, Özler Karakaş, Filippo Berto\",\"doi\":\"10.1111/ffe.14411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study, aims to weld the 5.2 mm thick AZ31 magnesium alloy with conventional friction stir welding at the highest joining efficiency. As a result of the experiments, 88% joining efficiency in tensile strength has been obtained at 1250 rpm, 400 mm.min<sup>−1</sup> welding parameter. As a result of micro–macrostructure photographic examinations of the samples joined with these parameters, it is seen that the joining is fully realized. Samples joined with these parameters have been used in fatigue tests. According to the strain-controlled low cycle fatigue test results performed on welded and base metal samples, the base metal samples have exceeded the 50,000-cycle limit without failure, with an elongation rate of 0.3%, and the welded samples with an elongation rate of 0.2%. Low cycle fatigue parameters of welded and base metal samples have been obtained according to the Coffin-Manson-Basquin equation.</p>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"47 11\",\"pages\":\"4165-4175\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14411\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14411\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14411","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Low cycle fatigue behavior of AZ31 magnesium alloy joined by friction stir welding
This study, aims to weld the 5.2 mm thick AZ31 magnesium alloy with conventional friction stir welding at the highest joining efficiency. As a result of the experiments, 88% joining efficiency in tensile strength has been obtained at 1250 rpm, 400 mm.min−1 welding parameter. As a result of micro–macrostructure photographic examinations of the samples joined with these parameters, it is seen that the joining is fully realized. Samples joined with these parameters have been used in fatigue tests. According to the strain-controlled low cycle fatigue test results performed on welded and base metal samples, the base metal samples have exceeded the 50,000-cycle limit without failure, with an elongation rate of 0.3%, and the welded samples with an elongation rate of 0.2%. Low cycle fatigue parameters of welded and base metal samples have been obtained according to the Coffin-Manson-Basquin equation.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.