金属间钯镓催化剂在常压下氢化二氧化碳合成甲醇的动力学启示

IF 4.4 4区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Kaisar Ahmad, Aasif Asharafbhai Dabbawala, Kyriaki Polychronopoulou, Dalaver Anjum, Marko Gacesa, Maguy Abi Jaoude
{"title":"金属间钯镓催化剂在常压下氢化二氧化碳合成甲醇的动力学启示","authors":"Kaisar Ahmad,&nbsp;Aasif Asharafbhai Dabbawala,&nbsp;Kyriaki Polychronopoulou,&nbsp;Dalaver Anjum,&nbsp;Marko Gacesa,&nbsp;Maguy Abi Jaoude","doi":"10.1002/gch2.202400159","DOIUrl":null,"url":null,"abstract":"<p>This study presents a single-site microkinetic model for methanol synthesis by CO<sub>2</sub> hydrogenation over intermetallic Pd<sub>2</sub>Ga/SiO<sub>2</sub>. A reaction path analysis (RPA) combining theoretical results and realistic catalyst surface reaction data is established to elucidate the reaction mechanism and kinetic models of CO<sub>2</sub> hydrogenation to methanol and CO. The RPA leads to the derivation of rate expressions for both reactions without presumptions about the most abundant reactive intermediate (MARI) and rate-determining step (rds). The formation of H<sub>2</sub>COOH* is found to be the rds (step 19) for methanol synthesis via the formate pathway, with CO<sub>2</sub> and H-atoms adsorbed on intermetallic sites as the MARIs. The derived kinetic model is corroborated with experimental data acquired under different reaction conditions, using a lab-scale fixed-bed reactor and Pd<sub>2</sub>Ga/SiO<sub>2</sub> nanoparticles prepared by incipient wetness impregnation. The excellent agreement between the experimental data and the kinetic model (<i>R</i><sup>2</sup> = 0.99) substantiates the proposed mechanism with an activation energy of 61.52 kJ mol<sup>-1</sup> for methanol synthesis. The reported catalyst exhibits high selectivity to methanol (96%) at 1 bar, 150 °C, and H<sub>2</sub>/CO<sub>2</sub> ratio of 3:1. These findings provide critical insights to optimize catalysts and processes targeting CO<sub>2</sub> hydrogenation at atmospheric pressure and low temperatures for on-demand energy production.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 10","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202400159","citationCount":"0","resultStr":"{\"title\":\"Kinetic Insights into Methanol Synthesis from CO2 Hydrogenation at Atmospheric Pressure over Intermetallic Pd2Ga Catalyst\",\"authors\":\"Kaisar Ahmad,&nbsp;Aasif Asharafbhai Dabbawala,&nbsp;Kyriaki Polychronopoulou,&nbsp;Dalaver Anjum,&nbsp;Marko Gacesa,&nbsp;Maguy Abi Jaoude\",\"doi\":\"10.1002/gch2.202400159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a single-site microkinetic model for methanol synthesis by CO<sub>2</sub> hydrogenation over intermetallic Pd<sub>2</sub>Ga/SiO<sub>2</sub>. A reaction path analysis (RPA) combining theoretical results and realistic catalyst surface reaction data is established to elucidate the reaction mechanism and kinetic models of CO<sub>2</sub> hydrogenation to methanol and CO. The RPA leads to the derivation of rate expressions for both reactions without presumptions about the most abundant reactive intermediate (MARI) and rate-determining step (rds). The formation of H<sub>2</sub>COOH* is found to be the rds (step 19) for methanol synthesis via the formate pathway, with CO<sub>2</sub> and H-atoms adsorbed on intermetallic sites as the MARIs. The derived kinetic model is corroborated with experimental data acquired under different reaction conditions, using a lab-scale fixed-bed reactor and Pd<sub>2</sub>Ga/SiO<sub>2</sub> nanoparticles prepared by incipient wetness impregnation. The excellent agreement between the experimental data and the kinetic model (<i>R</i><sup>2</sup> = 0.99) substantiates the proposed mechanism with an activation energy of 61.52 kJ mol<sup>-1</sup> for methanol synthesis. The reported catalyst exhibits high selectivity to methanol (96%) at 1 bar, 150 °C, and H<sub>2</sub>/CO<sub>2</sub> ratio of 3:1. These findings provide critical insights to optimize catalysts and processes targeting CO<sub>2</sub> hydrogenation at atmospheric pressure and low temperatures for on-demand energy production.</p>\",\"PeriodicalId\":12646,\"journal\":{\"name\":\"Global Challenges\",\"volume\":\"8 10\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202400159\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Challenges\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202400159\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202400159","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了在金属间 Pd2Ga/SiO2 上通过 CO2 加氢合成甲醇的单位微动力学模型。结合理论结果和实际催化剂表面反应数据,建立了反应路径分析(RPA),以阐明 CO2 加氢生成甲醇和 CO 的反应机理和动力学模型。通过 RPA,可以推导出这两个反应的速率表达式,而无需假定最丰富的反应中间体(MARI)和速率决定步骤(rds)。发现 H2COOH* 的形成是通过甲酸途径合成甲醇的速率决定步骤(步骤 19),金属间位点上吸附的 CO2 和 H 原子为 MARI。利用实验室规模的固定床反应器和通过初湿浸渍法制备的 Pd2Ga/SiO2 纳米粒子,在不同反应条件下获得的实验数据证实了推导出的动力学模型。实验数据与动力学模型(R2 = 0.99)之间的极佳一致性证实了所提出的机制,即甲醇合成的活化能为 61.52 kJ mol-1。在 1 bar、150 °C 和 H2/CO2 比率为 3:1 的条件下,报告的催化剂对甲醇具有很高的选择性(96%)。这些发现为优化常压低温下二氧化碳加氢催化剂和工艺以按需生产能源提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Kinetic Insights into Methanol Synthesis from CO2 Hydrogenation at Atmospheric Pressure over Intermetallic Pd2Ga Catalyst

Kinetic Insights into Methanol Synthesis from CO2 Hydrogenation at Atmospheric Pressure over Intermetallic Pd2Ga Catalyst

This study presents a single-site microkinetic model for methanol synthesis by CO2 hydrogenation over intermetallic Pd2Ga/SiO2. A reaction path analysis (RPA) combining theoretical results and realistic catalyst surface reaction data is established to elucidate the reaction mechanism and kinetic models of CO2 hydrogenation to methanol and CO. The RPA leads to the derivation of rate expressions for both reactions without presumptions about the most abundant reactive intermediate (MARI) and rate-determining step (rds). The formation of H2COOH* is found to be the rds (step 19) for methanol synthesis via the formate pathway, with CO2 and H-atoms adsorbed on intermetallic sites as the MARIs. The derived kinetic model is corroborated with experimental data acquired under different reaction conditions, using a lab-scale fixed-bed reactor and Pd2Ga/SiO2 nanoparticles prepared by incipient wetness impregnation. The excellent agreement between the experimental data and the kinetic model (R2 = 0.99) substantiates the proposed mechanism with an activation energy of 61.52 kJ mol-1 for methanol synthesis. The reported catalyst exhibits high selectivity to methanol (96%) at 1 bar, 150 °C, and H2/CO2 ratio of 3:1. These findings provide critical insights to optimize catalysts and processes targeting CO2 hydrogenation at atmospheric pressure and low temperatures for on-demand energy production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Challenges
Global Challenges MULTIDISCIPLINARY SCIENCES-
CiteScore
8.70
自引率
0.00%
发文量
79
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信