Sanxing Liu, Zhi Liu, Kai Zhou, Ying Liu, Xingjia Xiong, Tao Liao, Nanhai Ye
{"title":"基于复合材料强度退化的增强型疲劳损伤模型","authors":"Sanxing Liu, Zhi Liu, Kai Zhou, Ying Liu, Xingjia Xiong, Tao Liao, Nanhai Ye","doi":"10.1111/ffe.14418","DOIUrl":null,"url":null,"abstract":"<p>An enhanced nonlinear fatigue damage cumulative model proposed is based on the strength degradation characteristics of composites, aiming to investigate damage progression under fatigue loading. Building upon this foundation, given the assumption of a linear correlation between fatigue cumulative damage and stress level, a methodology is presented for extrapolating the damage curve of untested stress levels from that of tested stress levels. The model substantiates its reliability by validating against experimental data from several distinct material types. The reliability of the model has been validated using experimental data from multiple groups of materials. The experimental results indicate that the model can effectively reflect the fatigue damage development characteristics of composite materials. Simultaneously, the predicted stress levels derived from the proposed methodology show lesser deviation from the fitted data. Finally, a life prediction method founded on the proposed model is introduced, validated for its high prediction accuracy through experimentation.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 11","pages":"4012-4029"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An enhanced fatigue damage model based on strength degradation of composite materials\",\"authors\":\"Sanxing Liu, Zhi Liu, Kai Zhou, Ying Liu, Xingjia Xiong, Tao Liao, Nanhai Ye\",\"doi\":\"10.1111/ffe.14418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An enhanced nonlinear fatigue damage cumulative model proposed is based on the strength degradation characteristics of composites, aiming to investigate damage progression under fatigue loading. Building upon this foundation, given the assumption of a linear correlation between fatigue cumulative damage and stress level, a methodology is presented for extrapolating the damage curve of untested stress levels from that of tested stress levels. The model substantiates its reliability by validating against experimental data from several distinct material types. The reliability of the model has been validated using experimental data from multiple groups of materials. The experimental results indicate that the model can effectively reflect the fatigue damage development characteristics of composite materials. Simultaneously, the predicted stress levels derived from the proposed methodology show lesser deviation from the fitted data. Finally, a life prediction method founded on the proposed model is introduced, validated for its high prediction accuracy through experimentation.</p>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"47 11\",\"pages\":\"4012-4029\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14418\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14418","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
An enhanced fatigue damage model based on strength degradation of composite materials
An enhanced nonlinear fatigue damage cumulative model proposed is based on the strength degradation characteristics of composites, aiming to investigate damage progression under fatigue loading. Building upon this foundation, given the assumption of a linear correlation between fatigue cumulative damage and stress level, a methodology is presented for extrapolating the damage curve of untested stress levels from that of tested stress levels. The model substantiates its reliability by validating against experimental data from several distinct material types. The reliability of the model has been validated using experimental data from multiple groups of materials. The experimental results indicate that the model can effectively reflect the fatigue damage development characteristics of composite materials. Simultaneously, the predicted stress levels derived from the proposed methodology show lesser deviation from the fitted data. Finally, a life prediction method founded on the proposed model is introduced, validated for its high prediction accuracy through experimentation.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.