整图的二维平均曲率流

IF 1 2区 数学 Q1 MATHEMATICS
Andreas Savas Halilaj, Knut Smoczyk
{"title":"整图的二维平均曲率流","authors":"Andreas Savas Halilaj,&nbsp;Knut Smoczyk","doi":"10.1112/jlms.13000","DOIUrl":null,"url":null,"abstract":"<p>We consider the graphical mean curvature flow of maps <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <msup>\n <mi>R</mi>\n <mi>m</mi>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$\\mathbf {f}:{\\mathbb {R}^{m}}\\rightarrow {\\mathbb {R}^{n}}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$m\\geqslant 2$</annotation>\n </semantics></math>, and derive estimates on the growth rates of the evolved graphs, based on a new version of the maximum principle for properly immersed submanifolds that extends the well-known maximum principle of Ecker and Huisken derived in their seminal paper [Ann. of Math. (2) <b>130</b>:3(1989), 453–471]. In the case of uniformly area decreasing maps <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <msup>\n <mi>R</mi>\n <mi>m</mi>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbf {f}:{\\mathbb {R}^{m}} \\rightarrow {\\mathbb {R}^{2}}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$m\\geqslant 2$</annotation>\n </semantics></math>, we use this maximum principle to show that the graphicality and the area decreasing property are preserved. Moreover, if the initial graph is asymptotically conical at infinity, we prove that the normalized mean curvature flow smoothly converges to a self-expander.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.13000","citationCount":"0","resultStr":"{\"title\":\"Codimension two mean curvature flow of entire graphs\",\"authors\":\"Andreas Savas Halilaj,&nbsp;Knut Smoczyk\",\"doi\":\"10.1112/jlms.13000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the graphical mean curvature flow of maps <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>:</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>m</mi>\\n </msup>\\n <mo>→</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbf {f}:{\\\\mathbb {R}^{m}}\\\\rightarrow {\\\\mathbb {R}^{n}}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$m\\\\geqslant 2$</annotation>\\n </semantics></math>, and derive estimates on the growth rates of the evolved graphs, based on a new version of the maximum principle for properly immersed submanifolds that extends the well-known maximum principle of Ecker and Huisken derived in their seminal paper [Ann. of Math. (2) <b>130</b>:3(1989), 453–471]. In the case of uniformly area decreasing maps <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>:</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>m</mi>\\n </msup>\\n <mo>→</mo>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbf {f}:{\\\\mathbb {R}^{m}} \\\\rightarrow {\\\\mathbb {R}^{2}}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$m\\\\geqslant 2$</annotation>\\n </semantics></math>, we use this maximum principle to show that the graphicality and the area decreasing property are preserved. Moreover, if the initial graph is asymptotically conical at infinity, we prove that the normalized mean curvature flow smoothly converges to a self-expander.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.13000\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.13000\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.13000","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑映射 f : R m → R n 的图形平均曲率流 $\mathbf {f}:{\mathbb {R}^{m}}\rightarrow {\mathbb {R}^{n}}$ , m ⩾ 2 $m\geqslant 2$, 并基于适当沉浸子曼形体的新版最大值原理,推导出演化图的增长率估计值,该原理扩展了 Ecker 和 Huisken 在其开创性论文 [Ann.(2) 130:3(1989), 453-471]。在均匀面积递减映射 f : R m → R 2 $\mathbf {f}:{\mathbb {R}^{m}} 的情况下。\rightarrow {\mathbb {R}^{2}}$ , m ⩾ 2 $m\geqslant 2$,我们利用这个最大原则来证明图形性和面积递减属性是保留的。此外,如果初始图形在无穷远处渐近圆锥形,我们证明归一化平均曲率流平滑地收敛于自扩展流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Codimension two mean curvature flow of entire graphs

We consider the graphical mean curvature flow of maps f : R m R n $\mathbf {f}:{\mathbb {R}^{m}}\rightarrow {\mathbb {R}^{n}}$ , m 2 $m\geqslant 2$ , and derive estimates on the growth rates of the evolved graphs, based on a new version of the maximum principle for properly immersed submanifolds that extends the well-known maximum principle of Ecker and Huisken derived in their seminal paper [Ann. of Math. (2) 130:3(1989), 453–471]. In the case of uniformly area decreasing maps f : R m R 2 $\mathbf {f}:{\mathbb {R}^{m}} \rightarrow {\mathbb {R}^{2}}$ , m 2 $m\geqslant 2$ , we use this maximum principle to show that the graphicality and the area decreasing property are preserved. Moreover, if the initial graph is asymptotically conical at infinity, we prove that the normalized mean curvature flow smoothly converges to a self-expander.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信