{"title":"整数和黑尔斯-祖耶特立方体中的着色与密度关系","authors":"Christian Reiher, Vojtěch Rödl, Marcelo Sales","doi":"10.1112/jlms.12987","DOIUrl":null,"url":null,"abstract":"<p>We construct for every integer <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$k\\geqslant 3$</annotation>\n </semantics></math> and every real <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mfrac>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mi>k</mi>\n </mfrac>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mu \\in (0, \\frac{k-1}{k})$</annotation>\n </semantics></math> a set of integers <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>=</mo>\n <mi>X</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>μ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$X=X(k, \\mu)$</annotation>\n </semantics></math> which, when coloured with finitely many colours, contains a monochromatic <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-term arithmetic progression, whilst every finite <span></span><math>\n <semantics>\n <mrow>\n <mi>Y</mi>\n <mo>⊆</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$Y\\subseteq X$</annotation>\n </semantics></math> has a subset <span></span><math>\n <semantics>\n <mrow>\n <mi>Z</mi>\n <mo>⊆</mo>\n <mi>Y</mi>\n </mrow>\n <annotation>$Z\\subseteq Y$</annotation>\n </semantics></math> of size <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>Z</mi>\n <mo>|</mo>\n <mo>⩾</mo>\n <mi>μ</mi>\n <mo>|</mo>\n <mi>Y</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$|Z|\\geqslant \\mu |Y|$</annotation>\n </semantics></math> that is free of arithmetic progressions of length <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>. This answers a question of Erdős, Nešetřil and the second author. Moreover, we obtain an analogous multidimensional statement and a Hales–Jewett version of this result.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 5","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12987","citationCount":"0","resultStr":"{\"title\":\"Colouring versus density in integers and Hales–Jewett cubes\",\"authors\":\"Christian Reiher, Vojtěch Rödl, Marcelo Sales\",\"doi\":\"10.1112/jlms.12987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct for every integer <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$k\\\\geqslant 3$</annotation>\\n </semantics></math> and every real <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mfrac>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mi>k</mi>\\n </mfrac>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mu \\\\in (0, \\\\frac{k-1}{k})$</annotation>\\n </semantics></math> a set of integers <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>=</mo>\\n <mi>X</mi>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>μ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$X=X(k, \\\\mu)$</annotation>\\n </semantics></math> which, when coloured with finitely many colours, contains a monochromatic <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-term arithmetic progression, whilst every finite <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Y</mi>\\n <mo>⊆</mo>\\n <mi>X</mi>\\n </mrow>\\n <annotation>$Y\\\\subseteq X$</annotation>\\n </semantics></math> has a subset <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Z</mi>\\n <mo>⊆</mo>\\n <mi>Y</mi>\\n </mrow>\\n <annotation>$Z\\\\subseteq Y$</annotation>\\n </semantics></math> of size <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mi>Z</mi>\\n <mo>|</mo>\\n <mo>⩾</mo>\\n <mi>μ</mi>\\n <mo>|</mo>\\n <mi>Y</mi>\\n <mo>|</mo>\\n </mrow>\\n <annotation>$|Z|\\\\geqslant \\\\mu |Y|$</annotation>\\n </semantics></math> that is free of arithmetic progressions of length <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>. This answers a question of Erdős, Nešetřil and the second author. Moreover, we obtain an analogous multidimensional statement and a Hales–Jewett version of this result.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"110 5\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12987\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12987\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12987","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
We construct for every integer k ⩾ 3 $k\geqslant 3$ and every real μ ∈ ( 0 , k − 1 k ) $\mu \in (0, \frac{k-1}{k})$ a set of integers X = X ( k , μ ) $X=X(k, \mu)$ which, when coloured with finitely many colours, contains a monochromatic k $k$ -term arithmetic progression, whilst every finite Y ⊆ X $Y\subseteq X$ has a subset Z ⊆ Y $Z\subseteq Y$ of size | Z | ⩾ μ | Y | $|Z|\geqslant \mu |Y|$ that is free of arithmetic progressions of length k $k$ .这回答了厄尔多斯、奈舍特日尔和第二位作者的一个问题。此外,我们还得到了一个类似的多维声明以及这一结果的黑尔斯-杰伊特版本。
Colouring versus density in integers and Hales–Jewett cubes
We construct for every integer and every real a set of integers which, when coloured with finitely many colours, contains a monochromatic -term arithmetic progression, whilst every finite has a subset of size that is free of arithmetic progressions of length . This answers a question of Erdős, Nešetřil and the second author. Moreover, we obtain an analogous multidimensional statement and a Hales–Jewett version of this result.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.