天堂度量、超拉格朗日和乔伊斯结构

IF 1 2区 数学 Q1 MATHEMATICS
Maciej Dunajski, Timothy Moy
{"title":"天堂度量、超拉格朗日和乔伊斯结构","authors":"Maciej Dunajski,&nbsp;Timothy Moy","doi":"10.1112/jlms.13009","DOIUrl":null,"url":null,"abstract":"<p>In [Proc. Sympos. Pure Math., American Mathematical Society, Providence, RI, 2021, pp. 1–66], Bridgeland defined a geometric structure, named a Joyce structure, conjectured to exist on the space <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> of stability conditions of a <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msub>\n <mi>Y</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>$CY_3$</annotation>\n </semantics></math> triangulated category. Given a non-degeneracy assumption, a feature of this structure is a complex hyper-Kähler metric with homothetic symmetry on the total space <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>=</mo>\n <mi>T</mi>\n <mi>M</mi>\n </mrow>\n <annotation>$X = TM$</annotation>\n </semantics></math> of the holomorphic tangent bundle. Generalising the isomonodromy calculation which leads to the <span></span><math>\n <semantics>\n <msub>\n <mi>A</mi>\n <mn>2</mn>\n </msub>\n <annotation>$A_2$</annotation>\n </semantics></math> Joyce structure in [Math. Ann. <b>385</b> (2023), 193–258], we obtain an explicit expression for a hyper-Kähler metric with homothetic symmetry via construction of the isomonodromic flows of a Schrödinger equation with deformed polynomial oscillator potential of odd-degree <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$2n+1$</annotation>\n </semantics></math>. The metric is defined on a total space <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> of complex dimension <span></span><math>\n <semantics>\n <mrow>\n <mn>4</mn>\n <mi>n</mi>\n </mrow>\n <annotation>$4n$</annotation>\n </semantics></math> and fibres over a <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n <annotation>$2n$</annotation>\n </semantics></math>-dimensional manifold <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> which can be identified with the unfolding of the <span></span><math>\n <semantics>\n <msub>\n <mi>A</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$A_{2n}$</annotation>\n </semantics></math>-singularity. The hyper-Kähler structure is shown to be compatible with the natural symplectic structure on <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> in the sense of admitting an <i>affine symplectic fibration</i> as defined in [Lett. Math. Phys. <b>111</b> (2021), 54]. Separately, using the additional conditions imposed by a Joyce structure, we consider reductions of Plebański's heavenly equations that govern the hyper-Kähler condition. We introduce the notion of a <i>projectable hyper-Lagrangian</i> foliation and show that in dimension four such a foliation of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> leads to a linearisation of the heavenly equation. The hyper-Kähler metrics constructed here are shown to admit such a foliation.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.13009","citationCount":"0","resultStr":"{\"title\":\"Heavenly metrics, hyper-Lagrangians and Joyce structures\",\"authors\":\"Maciej Dunajski,&nbsp;Timothy Moy\",\"doi\":\"10.1112/jlms.13009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In [Proc. Sympos. Pure Math., American Mathematical Society, Providence, RI, 2021, pp. 1–66], Bridgeland defined a geometric structure, named a Joyce structure, conjectured to exist on the space <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> of stability conditions of a <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msub>\\n <mi>Y</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>$CY_3$</annotation>\\n </semantics></math> triangulated category. Given a non-degeneracy assumption, a feature of this structure is a complex hyper-Kähler metric with homothetic symmetry on the total space <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>=</mo>\\n <mi>T</mi>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$X = TM$</annotation>\\n </semantics></math> of the holomorphic tangent bundle. Generalising the isomonodromy calculation which leads to the <span></span><math>\\n <semantics>\\n <msub>\\n <mi>A</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$A_2$</annotation>\\n </semantics></math> Joyce structure in [Math. Ann. <b>385</b> (2023), 193–258], we obtain an explicit expression for a hyper-Kähler metric with homothetic symmetry via construction of the isomonodromic flows of a Schrödinger equation with deformed polynomial oscillator potential of odd-degree <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$2n+1$</annotation>\\n </semantics></math>. The metric is defined on a total space <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> of complex dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>4</mn>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$4n$</annotation>\\n </semantics></math> and fibres over a <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$2n$</annotation>\\n </semantics></math>-dimensional manifold <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> which can be identified with the unfolding of the <span></span><math>\\n <semantics>\\n <msub>\\n <mi>A</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <annotation>$A_{2n}$</annotation>\\n </semantics></math>-singularity. The hyper-Kähler structure is shown to be compatible with the natural symplectic structure on <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> in the sense of admitting an <i>affine symplectic fibration</i> as defined in [Lett. Math. Phys. <b>111</b> (2021), 54]. Separately, using the additional conditions imposed by a Joyce structure, we consider reductions of Plebański's heavenly equations that govern the hyper-Kähler condition. We introduce the notion of a <i>projectable hyper-Lagrangian</i> foliation and show that in dimension four such a foliation of <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> leads to a linearisation of the heavenly equation. The hyper-Kähler metrics constructed here are shown to admit such a foliation.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.13009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.13009\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.13009","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在[Proc.Pure Math.,American Mathematical Society,Providence,RI,2021,pp.1-66]中,布里奇兰定义了一种几何结构,命名为乔伊斯结构,猜想它存在于 C Y 3 $CY_3$ 三角形范畴的稳定条件空间 M $M$ 上。考虑到非退化假设,该结构的一个特征是在全形切线束的总空间 X = T M $X = TM$ 上具有同调对称性的复超凯勒度量。数学年鉴》385 (2023), 193-258]中的等单旋转计算导致了 A 2 $A_2$ 乔伊斯结构,我们通过构建具有奇数度 2 n + 1 $2n+1$ 变形多项式振荡器势的薛定谔方程的等单旋转流,得到了具有同调对称性的超凯勒度量的明确表达式。该度量定义在复维度为 4 n $4n$ 的总空间 X $X$ 上,其纤维覆盖 2 n $2n$ 维流形 M $M$,该流形可与 A 2 n $A_{2n}$ 星状性的展开相鉴别。超凯勒结构与 M $M$ 上的自然交映结构是相容的,就像[Lett. Math. Phys.另外,利用乔伊斯结构施加的附加条件,我们考虑了制约超凯勒条件的普莱宾斯基天体方程的还原。我们引入了可投影超拉格朗日折线的概念,并证明在四维中,X $X$ 的这种折线会导致天体方程的线性化。在此构建的超凯勒度量也被证明允许这样的折射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heavenly metrics, hyper-Lagrangians and Joyce structures

In [Proc. Sympos. Pure Math., American Mathematical Society, Providence, RI, 2021, pp. 1–66], Bridgeland defined a geometric structure, named a Joyce structure, conjectured to exist on the space M $M$ of stability conditions of a C Y 3 $CY_3$ triangulated category. Given a non-degeneracy assumption, a feature of this structure is a complex hyper-Kähler metric with homothetic symmetry on the total space X = T M $X = TM$ of the holomorphic tangent bundle. Generalising the isomonodromy calculation which leads to the A 2 $A_2$ Joyce structure in [Math. Ann. 385 (2023), 193–258], we obtain an explicit expression for a hyper-Kähler metric with homothetic symmetry via construction of the isomonodromic flows of a Schrödinger equation with deformed polynomial oscillator potential of odd-degree 2 n + 1 $2n+1$ . The metric is defined on a total space X $X$ of complex dimension 4 n $4n$ and fibres over a 2 n $2n$ -dimensional manifold M $M$ which can be identified with the unfolding of the A 2 n $A_{2n}$ -singularity. The hyper-Kähler structure is shown to be compatible with the natural symplectic structure on M $M$ in the sense of admitting an affine symplectic fibration as defined in [Lett. Math. Phys. 111 (2021), 54]. Separately, using the additional conditions imposed by a Joyce structure, we consider reductions of Plebański's heavenly equations that govern the hyper-Kähler condition. We introduce the notion of a projectable hyper-Lagrangian foliation and show that in dimension four such a foliation of X $X$ leads to a linearisation of the heavenly equation. The hyper-Kähler metrics constructed here are shown to admit such a foliation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信