用改进的蜣螂算法优化的反向传播神经网络预测 Ti-6Al-4V 合金的低循环疲劳寿命

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Zihao Gao, Changsheng Zhu, Yafeng Shu, Shaohui Wang, Canglong Wang, Yupeng Chen
{"title":"用改进的蜣螂算法优化的反向传播神经网络预测 Ti-6Al-4V 合金的低循环疲劳寿命","authors":"Zihao Gao,&nbsp;Changsheng Zhu,&nbsp;Yafeng Shu,&nbsp;Shaohui Wang,&nbsp;Canglong Wang,&nbsp;Yupeng Chen","doi":"10.1111/ffe.14407","DOIUrl":null,"url":null,"abstract":"<p>In this study, we propose an innovative approach that enhances the performance of the backpropagation (BP) neural network in predicting the low-cycle fatigue life of Ti-6Al-4V alloy by improving the dung beetle optimization (DBO) algorithm with the maximin Latin hypercube design (MLHD) strategy. To address the challenges posed by complex geometric components under different temperature conditions, this research employs finite element simulation to expand the limited experimental dataset and utilizes these data to further guide and optimize the MLHD_DBO_BP model. Test results indicate that the proposed MLHD_DBO_BP model significantly outperforms the traditional finite element method (FEM) and other neural network models in terms of fatigue life prediction performance. This research demonstrates the effectiveness of machine learning models that combine experimental and simulation data in predicting the low-cycle fatigue life of Ti-6Al-4V alloy.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 11","pages":"3983-3999"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the low-cycle fatigue life of Ti-6Al-4V alloy using backpropagation neural network optimized by the improved dung beetle algorithm\",\"authors\":\"Zihao Gao,&nbsp;Changsheng Zhu,&nbsp;Yafeng Shu,&nbsp;Shaohui Wang,&nbsp;Canglong Wang,&nbsp;Yupeng Chen\",\"doi\":\"10.1111/ffe.14407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we propose an innovative approach that enhances the performance of the backpropagation (BP) neural network in predicting the low-cycle fatigue life of Ti-6Al-4V alloy by improving the dung beetle optimization (DBO) algorithm with the maximin Latin hypercube design (MLHD) strategy. To address the challenges posed by complex geometric components under different temperature conditions, this research employs finite element simulation to expand the limited experimental dataset and utilizes these data to further guide and optimize the MLHD_DBO_BP model. Test results indicate that the proposed MLHD_DBO_BP model significantly outperforms the traditional finite element method (FEM) and other neural network models in terms of fatigue life prediction performance. This research demonstrates the effectiveness of machine learning models that combine experimental and simulation data in predicting the low-cycle fatigue life of Ti-6Al-4V alloy.</p>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"47 11\",\"pages\":\"3983-3999\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14407\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14407","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出了一种创新方法,通过使用最大化拉丁超立方设计(MLHD)策略改进蜣螂优化(DBO)算法,提高了反向传播(BP)神经网络在预测 Ti-6Al-4V 合金低循环疲劳寿命方面的性能。为了应对不同温度条件下复杂几何部件带来的挑战,本研究采用有限元模拟来扩展有限的实验数据集,并利用这些数据进一步指导和优化 MLHD_DBO_BP 模型。测试结果表明,所提出的 MLHD_DBO_BP 模型在疲劳寿命预测性能方面明显优于传统的有限元法(FEM)和其他神经网络模型。这项研究证明了结合实验和模拟数据的机器学习模型在预测 Ti-6Al-4V 合金低循环疲劳寿命方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the low-cycle fatigue life of Ti-6Al-4V alloy using backpropagation neural network optimized by the improved dung beetle algorithm

In this study, we propose an innovative approach that enhances the performance of the backpropagation (BP) neural network in predicting the low-cycle fatigue life of Ti-6Al-4V alloy by improving the dung beetle optimization (DBO) algorithm with the maximin Latin hypercube design (MLHD) strategy. To address the challenges posed by complex geometric components under different temperature conditions, this research employs finite element simulation to expand the limited experimental dataset and utilizes these data to further guide and optimize the MLHD_DBO_BP model. Test results indicate that the proposed MLHD_DBO_BP model significantly outperforms the traditional finite element method (FEM) and other neural network models in terms of fatigue life prediction performance. This research demonstrates the effectiveness of machine learning models that combine experimental and simulation data in predicting the low-cycle fatigue life of Ti-6Al-4V alloy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信