布鲁哈特阶的赋形商、准对称品种和滕伯里-里布代数

IF 1 2区 数学 Q1 MATHEMATICS
Nantel Bergeron, Lucas Gagnon
{"title":"布鲁哈特阶的赋形商、准对称品种和滕伯里-里布代数","authors":"Nantel Bergeron,&nbsp;Lucas Gagnon","doi":"10.1112/jlms.13007","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mi>n</mi>\n </msub>\n <mo>=</mo>\n <mi>Q</mi>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mi>n</mi>\n </msub>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$R_n=\\mathbb {Q}[x_1,x_2,\\ldots ,x_n]$</annotation>\n </semantics></math> be the ring of polynomials in <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> variables and consider the ideal <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>⟨</mo>\n <msubsup>\n <mi>QSym</mi>\n <mi>n</mi>\n <mo>+</mo>\n </msubsup>\n <mo>⟩</mo>\n </mrow>\n <mo>⊆</mo>\n <msub>\n <mi>R</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$\\langle \\mathrm{QSym}_{n}^{+}\\rangle \\subseteq R_n$</annotation>\n </semantics></math> generated by quasisymmetric polynomials without constant term. It was shown by J. C. Aval, F. Bergeron, and N. Bergeron that <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mo>(</mo>\n <msub>\n <mi>R</mi>\n <mi>n</mi>\n </msub>\n <mo>/</mo>\n <mrow>\n <mo>⟨</mo>\n <msubsup>\n <mi>QSym</mi>\n <mi>n</mi>\n <mo>+</mo>\n </msubsup>\n <mo>⟩</mo>\n </mrow>\n <mo>)</mo>\n <mo>=</mo>\n <msub>\n <mi>C</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$\\dim \\big (R_n\\big /\\langle \\mathrm{QSym}_{n}^{+} \\rangle \\big)=C_n$</annotation>\n </semantics></math> the <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>th Catalan number. In the present work, we explain this phenomenon by defining a set of permutations <span></span><math>\n <semantics>\n <msub>\n <mi>QSV</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathrm{QSV}_{n}$</annotation>\n </semantics></math> with the following properties: first, <span></span><math>\n <semantics>\n <msub>\n <mi>QSV</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathrm{QSV}_{n}$</annotation>\n </semantics></math> is a basis of the Temperley–Lieb algebra <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>TL</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathsf {TL}_{n}(2)$</annotation>\n </semantics></math>, and second, when considering <span></span><math>\n <semantics>\n <msub>\n <mi>QSV</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathrm{QSV}_{n}$</annotation>\n </semantics></math> as a collection of points in <span></span><math>\n <semantics>\n <msup>\n <mi>Q</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {Q}^{n}$</annotation>\n </semantics></math>, the top-degree homogeneous component of the vanishing ideal <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mo>(</mo>\n <msub>\n <mi>QSV</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathbf {I}(\\mathrm{QSV}_{n})$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mo>⟨</mo>\n <msubsup>\n <mi>QSym</mi>\n <mi>n</mi>\n <mo>+</mo>\n </msubsup>\n <mo>⟩</mo>\n </mrow>\n <annotation>$\\langle \\mathrm{QSym}_{n}^{+}\\rangle$</annotation>\n </semantics></math>. Our construction has a few byproducts that are independently noteworthy. We define an equivalence relation <span></span><math>\n <semantics>\n <mo>∼</mo>\n <annotation>$\\sim$</annotation>\n </semantics></math> on the symmetric group <span></span><math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <annotation>$S_{n}$</annotation>\n </semantics></math> using weak excedances and show that its equivalence classes are naturally indexed by noncrossing partitions. Each equivalence class is an interval in the Bruhat order between an element of <span></span><math>\n <semantics>\n <msub>\n <mi>QSV</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathrm{QSV}_{n}$</annotation>\n </semantics></math> and a 321-avoiding permutation. Furthermore, the Bruhat order induces a well-defined order on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mo>/</mo>\n <mspace></mspace>\n <mspace></mspace>\n <mo>∼</mo>\n </mrow>\n <annotation>$S_{n}\\big /\\!\\!\\sim$</annotation>\n </semantics></math>. Finally, we show that any section of the quotient <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mo>/</mo>\n <mspace></mspace>\n <mspace></mspace>\n <mo>∼</mo>\n </mrow>\n <annotation>$S_{n}\\big /\\!\\!\\sim$</annotation>\n </semantics></math> gives an (often novel) basis for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>TL</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathsf {TL}_{n}(2)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.13007","citationCount":"0","resultStr":"{\"title\":\"The excedance quotient of the Bruhat order, quasisymmetric varieties, and Temperley–Lieb algebras\",\"authors\":\"Nantel Bergeron,&nbsp;Lucas Gagnon\",\"doi\":\"10.1112/jlms.13007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>=</mo>\\n <mi>Q</mi>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n <annotation>$R_n=\\\\mathbb {Q}[x_1,x_2,\\\\ldots ,x_n]$</annotation>\\n </semantics></math> be the ring of polynomials in <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> variables and consider the ideal <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>⟨</mo>\\n <msubsup>\\n <mi>QSym</mi>\\n <mi>n</mi>\\n <mo>+</mo>\\n </msubsup>\\n <mo>⟩</mo>\\n </mrow>\\n <mo>⊆</mo>\\n <msub>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\langle \\\\mathrm{QSym}_{n}^{+}\\\\rangle \\\\subseteq R_n$</annotation>\\n </semantics></math> generated by quasisymmetric polynomials without constant term. It was shown by J. C. Aval, F. Bergeron, and N. Bergeron that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>dim</mo>\\n <mo>(</mo>\\n <msub>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>/</mo>\\n <mrow>\\n <mo>⟨</mo>\\n <msubsup>\\n <mi>QSym</mi>\\n <mi>n</mi>\\n <mo>+</mo>\\n </msubsup>\\n <mo>⟩</mo>\\n </mrow>\\n <mo>)</mo>\\n <mo>=</mo>\\n <msub>\\n <mi>C</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\dim \\\\big (R_n\\\\big /\\\\langle \\\\mathrm{QSym}_{n}^{+} \\\\rangle \\\\big)=C_n$</annotation>\\n </semantics></math> the <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>th Catalan number. In the present work, we explain this phenomenon by defining a set of permutations <span></span><math>\\n <semantics>\\n <msub>\\n <mi>QSV</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\mathrm{QSV}_{n}$</annotation>\\n </semantics></math> with the following properties: first, <span></span><math>\\n <semantics>\\n <msub>\\n <mi>QSV</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\mathrm{QSV}_{n}$</annotation>\\n </semantics></math> is a basis of the Temperley–Lieb algebra <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>TL</mi>\\n <mi>n</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathsf {TL}_{n}(2)$</annotation>\\n </semantics></math>, and second, when considering <span></span><math>\\n <semantics>\\n <msub>\\n <mi>QSV</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\mathrm{QSV}_{n}$</annotation>\\n </semantics></math> as a collection of points in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>Q</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {Q}^{n}$</annotation>\\n </semantics></math>, the top-degree homogeneous component of the vanishing ideal <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>I</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>QSV</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathbf {I}(\\\\mathrm{QSV}_{n})$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>⟨</mo>\\n <msubsup>\\n <mi>QSym</mi>\\n <mi>n</mi>\\n <mo>+</mo>\\n </msubsup>\\n <mo>⟩</mo>\\n </mrow>\\n <annotation>$\\\\langle \\\\mathrm{QSym}_{n}^{+}\\\\rangle$</annotation>\\n </semantics></math>. Our construction has a few byproducts that are independently noteworthy. We define an equivalence relation <span></span><math>\\n <semantics>\\n <mo>∼</mo>\\n <annotation>$\\\\sim$</annotation>\\n </semantics></math> on the symmetric group <span></span><math>\\n <semantics>\\n <msub>\\n <mi>S</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$S_{n}$</annotation>\\n </semantics></math> using weak excedances and show that its equivalence classes are naturally indexed by noncrossing partitions. Each equivalence class is an interval in the Bruhat order between an element of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>QSV</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\mathrm{QSV}_{n}$</annotation>\\n </semantics></math> and a 321-avoiding permutation. Furthermore, the Bruhat order induces a well-defined order on <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>S</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>/</mo>\\n <mspace></mspace>\\n <mspace></mspace>\\n <mo>∼</mo>\\n </mrow>\\n <annotation>$S_{n}\\\\big /\\\\!\\\\!\\\\sim$</annotation>\\n </semantics></math>. Finally, we show that any section of the quotient <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>S</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>/</mo>\\n <mspace></mspace>\\n <mspace></mspace>\\n <mo>∼</mo>\\n </mrow>\\n <annotation>$S_{n}\\\\big /\\\\!\\\\!\\\\sim$</annotation>\\n </semantics></math> gives an (often novel) basis for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>TL</mi>\\n <mi>n</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathsf {TL}_{n}(2)$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"110 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.13007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.13007\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.13007","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 R n = Q [ x 1 , x 2 , ... , x n ] $R_n=\mathbb {Q}[x_1,x_2,\ldots ,x_n]$ 是 n 个 $n$ 变量的多项式环,并考虑由无常数项的准对称多项式产生的理想 ⟨ QSym n + ⟩ ⊆ R n $langle \mathrm{QSym}_{n}^{+}\rangle \subseteq R_n$。J. C. Aval、F. Bergeron 和 N. Bergeron 证明 dim ( R n / ⟨ QSym n + ⟩ ) = C n $dim \big (R_n\big /\langle \mathrm{QSym}_{n}^{+} \rangle \big)=C_n$ 第 n 个 $n$ 加泰罗尼亚数。In the present work, we explain this phenomenon by defining a set of permutations QSV n $\mathrm{QSV}_{n}$ with the following properties: first, QSV n $\mathrm{QSV}_{n}$ is a basis of the Temperley–Lieb algebra TL n ( 2 ) $\mathsf {TL}_{n}(2)$ , and second, when considering QSV n $\mathrm{QSV}_{n}$ as a collection of points in Q n $\mathbb {Q}^{n}$ , the top-degree homogeneous component of the vanishing ideal I ( QSV n ) $\mathbf {I}(\mathrm{QSV}_{n})$ is ⟨ QSym n + ⟩ $\langle \mathrm{QSym}_{n}^{+}\rangle$ .我们的构造有一些值得注意的副产品。我们在对称群 S n $S_{n}$ 上定义了一个等价关系 ∼ $\sim$ ,并证明其等价类是由非交叉分区自然索引的。每个等价类都是 QSV n $\mathrm{QSV}_{n}$ 的一个元素与一个 321 避开排列之间的布鲁哈特阶间隔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The excedance quotient of the Bruhat order, quasisymmetric varieties, and Temperley–Lieb algebras

The excedance quotient of the Bruhat order, quasisymmetric varieties, and Temperley–Lieb algebras

Let R n = Q [ x 1 , x 2 , , x n ] $R_n=\mathbb {Q}[x_1,x_2,\ldots ,x_n]$ be the ring of polynomials in n $n$ variables and consider the ideal QSym n + R n $\langle \mathrm{QSym}_{n}^{+}\rangle \subseteq R_n$ generated by quasisymmetric polynomials without constant term. It was shown by J. C. Aval, F. Bergeron, and N. Bergeron that dim ( R n / QSym n + ) = C n $\dim \big (R_n\big /\langle \mathrm{QSym}_{n}^{+} \rangle \big)=C_n$ the n $n$ th Catalan number. In the present work, we explain this phenomenon by defining a set of permutations QSV n $\mathrm{QSV}_{n}$ with the following properties: first, QSV n $\mathrm{QSV}_{n}$ is a basis of the Temperley–Lieb algebra TL n ( 2 ) $\mathsf {TL}_{n}(2)$ , and second, when considering QSV n $\mathrm{QSV}_{n}$ as a collection of points in Q n $\mathbb {Q}^{n}$ , the top-degree homogeneous component of the vanishing ideal I ( QSV n ) $\mathbf {I}(\mathrm{QSV}_{n})$ is QSym n + $\langle \mathrm{QSym}_{n}^{+}\rangle$ . Our construction has a few byproducts that are independently noteworthy. We define an equivalence relation $\sim$ on the symmetric group S n $S_{n}$ using weak excedances and show that its equivalence classes are naturally indexed by noncrossing partitions. Each equivalence class is an interval in the Bruhat order between an element of QSV n $\mathrm{QSV}_{n}$ and a 321-avoiding permutation. Furthermore, the Bruhat order induces a well-defined order on S n / $S_{n}\big /\!\!\sim$ . Finally, we show that any section of the quotient S n / $S_{n}\big /\!\!\sim$ gives an (often novel) basis for TL n ( 2 ) $\mathsf {TL}_{n}(2)$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信