{"title":"布鲁哈特阶的赋形商、准对称品种和滕伯里-里布代数","authors":"Nantel Bergeron, Lucas Gagnon","doi":"10.1112/jlms.13007","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mi>n</mi>\n </msub>\n <mo>=</mo>\n <mi>Q</mi>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mi>n</mi>\n </msub>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$R_n=\\mathbb {Q}[x_1,x_2,\\ldots ,x_n]$</annotation>\n </semantics></math> be the ring of polynomials in <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> variables and consider the ideal <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>⟨</mo>\n <msubsup>\n <mi>QSym</mi>\n <mi>n</mi>\n <mo>+</mo>\n </msubsup>\n <mo>⟩</mo>\n </mrow>\n <mo>⊆</mo>\n <msub>\n <mi>R</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$\\langle \\mathrm{QSym}_{n}^{+}\\rangle \\subseteq R_n$</annotation>\n </semantics></math> generated by quasisymmetric polynomials without constant term. It was shown by J. C. Aval, F. Bergeron, and N. Bergeron that <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mo>(</mo>\n <msub>\n <mi>R</mi>\n <mi>n</mi>\n </msub>\n <mo>/</mo>\n <mrow>\n <mo>⟨</mo>\n <msubsup>\n <mi>QSym</mi>\n <mi>n</mi>\n <mo>+</mo>\n </msubsup>\n <mo>⟩</mo>\n </mrow>\n <mo>)</mo>\n <mo>=</mo>\n <msub>\n <mi>C</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$\\dim \\big (R_n\\big /\\langle \\mathrm{QSym}_{n}^{+} \\rangle \\big)=C_n$</annotation>\n </semantics></math> the <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>th Catalan number. In the present work, we explain this phenomenon by defining a set of permutations <span></span><math>\n <semantics>\n <msub>\n <mi>QSV</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathrm{QSV}_{n}$</annotation>\n </semantics></math> with the following properties: first, <span></span><math>\n <semantics>\n <msub>\n <mi>QSV</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathrm{QSV}_{n}$</annotation>\n </semantics></math> is a basis of the Temperley–Lieb algebra <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>TL</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathsf {TL}_{n}(2)$</annotation>\n </semantics></math>, and second, when considering <span></span><math>\n <semantics>\n <msub>\n <mi>QSV</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathrm{QSV}_{n}$</annotation>\n </semantics></math> as a collection of points in <span></span><math>\n <semantics>\n <msup>\n <mi>Q</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {Q}^{n}$</annotation>\n </semantics></math>, the top-degree homogeneous component of the vanishing ideal <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mo>(</mo>\n <msub>\n <mi>QSV</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathbf {I}(\\mathrm{QSV}_{n})$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mo>⟨</mo>\n <msubsup>\n <mi>QSym</mi>\n <mi>n</mi>\n <mo>+</mo>\n </msubsup>\n <mo>⟩</mo>\n </mrow>\n <annotation>$\\langle \\mathrm{QSym}_{n}^{+}\\rangle$</annotation>\n </semantics></math>. Our construction has a few byproducts that are independently noteworthy. We define an equivalence relation <span></span><math>\n <semantics>\n <mo>∼</mo>\n <annotation>$\\sim$</annotation>\n </semantics></math> on the symmetric group <span></span><math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <annotation>$S_{n}$</annotation>\n </semantics></math> using weak excedances and show that its equivalence classes are naturally indexed by noncrossing partitions. Each equivalence class is an interval in the Bruhat order between an element of <span></span><math>\n <semantics>\n <msub>\n <mi>QSV</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathrm{QSV}_{n}$</annotation>\n </semantics></math> and a 321-avoiding permutation. Furthermore, the Bruhat order induces a well-defined order on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mo>/</mo>\n <mspace></mspace>\n <mspace></mspace>\n <mo>∼</mo>\n </mrow>\n <annotation>$S_{n}\\big /\\!\\!\\sim$</annotation>\n </semantics></math>. Finally, we show that any section of the quotient <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mo>/</mo>\n <mspace></mspace>\n <mspace></mspace>\n <mo>∼</mo>\n </mrow>\n <annotation>$S_{n}\\big /\\!\\!\\sim$</annotation>\n </semantics></math> gives an (often novel) basis for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>TL</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathsf {TL}_{n}(2)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.13007","citationCount":"0","resultStr":"{\"title\":\"The excedance quotient of the Bruhat order, quasisymmetric varieties, and Temperley–Lieb algebras\",\"authors\":\"Nantel Bergeron, Lucas Gagnon\",\"doi\":\"10.1112/jlms.13007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>=</mo>\\n <mi>Q</mi>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n <annotation>$R_n=\\\\mathbb {Q}[x_1,x_2,\\\\ldots ,x_n]$</annotation>\\n </semantics></math> be the ring of polynomials in <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> variables and consider the ideal <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>⟨</mo>\\n <msubsup>\\n <mi>QSym</mi>\\n <mi>n</mi>\\n <mo>+</mo>\\n </msubsup>\\n <mo>⟩</mo>\\n </mrow>\\n <mo>⊆</mo>\\n <msub>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\langle \\\\mathrm{QSym}_{n}^{+}\\\\rangle \\\\subseteq R_n$</annotation>\\n </semantics></math> generated by quasisymmetric polynomials without constant term. It was shown by J. C. Aval, F. Bergeron, and N. Bergeron that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>dim</mo>\\n <mo>(</mo>\\n <msub>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>/</mo>\\n <mrow>\\n <mo>⟨</mo>\\n <msubsup>\\n <mi>QSym</mi>\\n <mi>n</mi>\\n <mo>+</mo>\\n </msubsup>\\n <mo>⟩</mo>\\n </mrow>\\n <mo>)</mo>\\n <mo>=</mo>\\n <msub>\\n <mi>C</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\dim \\\\big (R_n\\\\big /\\\\langle \\\\mathrm{QSym}_{n}^{+} \\\\rangle \\\\big)=C_n$</annotation>\\n </semantics></math> the <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>th Catalan number. In the present work, we explain this phenomenon by defining a set of permutations <span></span><math>\\n <semantics>\\n <msub>\\n <mi>QSV</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\mathrm{QSV}_{n}$</annotation>\\n </semantics></math> with the following properties: first, <span></span><math>\\n <semantics>\\n <msub>\\n <mi>QSV</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\mathrm{QSV}_{n}$</annotation>\\n </semantics></math> is a basis of the Temperley–Lieb algebra <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>TL</mi>\\n <mi>n</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathsf {TL}_{n}(2)$</annotation>\\n </semantics></math>, and second, when considering <span></span><math>\\n <semantics>\\n <msub>\\n <mi>QSV</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\mathrm{QSV}_{n}$</annotation>\\n </semantics></math> as a collection of points in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>Q</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {Q}^{n}$</annotation>\\n </semantics></math>, the top-degree homogeneous component of the vanishing ideal <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>I</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>QSV</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathbf {I}(\\\\mathrm{QSV}_{n})$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>⟨</mo>\\n <msubsup>\\n <mi>QSym</mi>\\n <mi>n</mi>\\n <mo>+</mo>\\n </msubsup>\\n <mo>⟩</mo>\\n </mrow>\\n <annotation>$\\\\langle \\\\mathrm{QSym}_{n}^{+}\\\\rangle$</annotation>\\n </semantics></math>. Our construction has a few byproducts that are independently noteworthy. We define an equivalence relation <span></span><math>\\n <semantics>\\n <mo>∼</mo>\\n <annotation>$\\\\sim$</annotation>\\n </semantics></math> on the symmetric group <span></span><math>\\n <semantics>\\n <msub>\\n <mi>S</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$S_{n}$</annotation>\\n </semantics></math> using weak excedances and show that its equivalence classes are naturally indexed by noncrossing partitions. Each equivalence class is an interval in the Bruhat order between an element of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>QSV</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\mathrm{QSV}_{n}$</annotation>\\n </semantics></math> and a 321-avoiding permutation. Furthermore, the Bruhat order induces a well-defined order on <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>S</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>/</mo>\\n <mspace></mspace>\\n <mspace></mspace>\\n <mo>∼</mo>\\n </mrow>\\n <annotation>$S_{n}\\\\big /\\\\!\\\\!\\\\sim$</annotation>\\n </semantics></math>. Finally, we show that any section of the quotient <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>S</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>/</mo>\\n <mspace></mspace>\\n <mspace></mspace>\\n <mo>∼</mo>\\n </mrow>\\n <annotation>$S_{n}\\\\big /\\\\!\\\\!\\\\sim$</annotation>\\n </semantics></math> gives an (often novel) basis for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>TL</mi>\\n <mi>n</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathsf {TL}_{n}(2)$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.13007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.13007\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.13007","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 R n = Q [ x 1 , x 2 , ... , x n ] $R_n=\mathbb {Q}[x_1,x_2,\ldots ,x_n]$ 是 n 个 $n$ 变量的多项式环,并考虑由无常数项的准对称多项式产生的理想 ⟨ QSym n + ⟩ ⊆ R n $langle \mathrm{QSym}_{n}^{+}\rangle \subseteq R_n$。J. C. Aval、F. Bergeron 和 N. Bergeron 证明 dim ( R n / ⟨ QSym n + ⟩ ) = C n $dim \big (R_n\big /\langle \mathrm{QSym}_{n}^{+} \rangle \big)=C_n$ 第 n 个 $n$ 加泰罗尼亚数。In the present work, we explain this phenomenon by defining a set of permutations QSV n $\mathrm{QSV}_{n}$ with the following properties: first, QSV n $\mathrm{QSV}_{n}$ is a basis of the Temperley–Lieb algebra TL n ( 2 ) $\mathsf {TL}_{n}(2)$ , and second, when considering QSV n $\mathrm{QSV}_{n}$ as a collection of points in Q n $\mathbb {Q}^{n}$ , the top-degree homogeneous component of the vanishing ideal I ( QSV n ) $\mathbf {I}(\mathrm{QSV}_{n})$ is ⟨ QSym n + ⟩ $\langle \mathrm{QSym}_{n}^{+}\rangle$ .我们的构造有一些值得注意的副产品。我们在对称群 S n $S_{n}$ 上定义了一个等价关系 ∼ $\sim$ ,并证明其等价类是由非交叉分区自然索引的。每个等价类都是 QSV n $\mathrm{QSV}_{n}$ 的一个元素与一个 321 避开排列之间的布鲁哈特阶间隔。
The excedance quotient of the Bruhat order, quasisymmetric varieties, and Temperley–Lieb algebras
Let be the ring of polynomials in variables and consider the ideal generated by quasisymmetric polynomials without constant term. It was shown by J. C. Aval, F. Bergeron, and N. Bergeron that the th Catalan number. In the present work, we explain this phenomenon by defining a set of permutations with the following properties: first, is a basis of the Temperley–Lieb algebra , and second, when considering as a collection of points in , the top-degree homogeneous component of the vanishing ideal is . Our construction has a few byproducts that are independently noteworthy. We define an equivalence relation on the symmetric group using weak excedances and show that its equivalence classes are naturally indexed by noncrossing partitions. Each equivalence class is an interval in the Bruhat order between an element of and a 321-avoiding permutation. Furthermore, the Bruhat order induces a well-defined order on . Finally, we show that any section of the quotient gives an (often novel) basis for .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.