Ezio Ferroglio, Rachele Vada, Flavia Occhibove, Mattia Fracchia, Federica De Cicco, Pablo Palencia, Amir Reza Varzandi, Stefania Zanet
{"title":"以综合方法解决新问题:在评估野生动物对蜱虫数量的影响时实施全年摄像陷阱调查","authors":"Ezio Ferroglio, Rachele Vada, Flavia Occhibove, Mattia Fracchia, Federica De Cicco, Pablo Palencia, Amir Reza Varzandi, Stefania Zanet","doi":"10.1155/2024/4064855","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Tick-borne zoonoses are an emerging health issue. The expansion of ticks is mainly driven by climatic changes but also by new approaches to the management of the natural environment, increasing the abundance of vertebrate host species and thus the potential exposure to tick bites for both humans and companion animals. In this context, a holistic approach to studying ticks’ ecology is required. In the present work, we shed light on the link between environmental tick abundance (global and specific of <i>Ixodes ricinus</i> nymphs, as the highest zoonotic threat) and the temporal occupancy of wildlife host species retrieved from camera traps (namely, wild ruminants, mesocarnivores and wild boar). We modelled this relationship by integrating abiotic factors relevant to tick survival, such as the vegetation cover and saturation deficit, and estimated the accuracy of prediction. To collect these data, we deployed camera traps in a peri-urban Natural Park in Northwest Italy to monitor wildlife for 1 whole year while collecting ticks in front of camera traps by dragging transects every 2 weeks. Overall, wildlife temporal occupancy showed an additive impact on tick abundance for species that are preferential hosts (deer and mesocarnivores) and a detractive impact for wild boar, which also presented a lower tick burden, particularly with regard to the tick species collected in the environment (mainly <i>I. ricinus</i> and <i>Haemaphysalis punctata</i>). Accuracy of prediction was higher for <i>I. ricinus</i> nymphs rather than the global model. Temporal fluctuations in the tick population were also highlighted. Wildlife temporal occupancy was not constant and varied between seasons according to feeding habits. In conclusion, we highlighted the utility of camera trap data to investigate tick ecology and acarological risk. This information is crucial in informing monitoring and prevention strategies to decrease the risk of tick bites in humans and thus zoonotic risk of tick-borne diseases.</p>\n </div>","PeriodicalId":234,"journal":{"name":"Transboundary and Emerging Diseases","volume":"2024 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4064855","citationCount":"0","resultStr":"{\"title\":\"An Integrated Approach to an Emerging Problem: Implementing a Whole Year of Camera Trap Survey in Evaluating the Impact of Wildlife on Tick Abundance\",\"authors\":\"Ezio Ferroglio, Rachele Vada, Flavia Occhibove, Mattia Fracchia, Federica De Cicco, Pablo Palencia, Amir Reza Varzandi, Stefania Zanet\",\"doi\":\"10.1155/2024/4064855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Tick-borne zoonoses are an emerging health issue. The expansion of ticks is mainly driven by climatic changes but also by new approaches to the management of the natural environment, increasing the abundance of vertebrate host species and thus the potential exposure to tick bites for both humans and companion animals. In this context, a holistic approach to studying ticks’ ecology is required. In the present work, we shed light on the link between environmental tick abundance (global and specific of <i>Ixodes ricinus</i> nymphs, as the highest zoonotic threat) and the temporal occupancy of wildlife host species retrieved from camera traps (namely, wild ruminants, mesocarnivores and wild boar). We modelled this relationship by integrating abiotic factors relevant to tick survival, such as the vegetation cover and saturation deficit, and estimated the accuracy of prediction. To collect these data, we deployed camera traps in a peri-urban Natural Park in Northwest Italy to monitor wildlife for 1 whole year while collecting ticks in front of camera traps by dragging transects every 2 weeks. Overall, wildlife temporal occupancy showed an additive impact on tick abundance for species that are preferential hosts (deer and mesocarnivores) and a detractive impact for wild boar, which also presented a lower tick burden, particularly with regard to the tick species collected in the environment (mainly <i>I. ricinus</i> and <i>Haemaphysalis punctata</i>). Accuracy of prediction was higher for <i>I. ricinus</i> nymphs rather than the global model. Temporal fluctuations in the tick population were also highlighted. Wildlife temporal occupancy was not constant and varied between seasons according to feeding habits. In conclusion, we highlighted the utility of camera trap data to investigate tick ecology and acarological risk. This information is crucial in informing monitoring and prevention strategies to decrease the risk of tick bites in humans and thus zoonotic risk of tick-borne diseases.</p>\\n </div>\",\"PeriodicalId\":234,\"journal\":{\"name\":\"Transboundary and Emerging Diseases\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4064855\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transboundary and Emerging Diseases\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/4064855\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transboundary and Emerging Diseases","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/4064855","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
An Integrated Approach to an Emerging Problem: Implementing a Whole Year of Camera Trap Survey in Evaluating the Impact of Wildlife on Tick Abundance
Tick-borne zoonoses are an emerging health issue. The expansion of ticks is mainly driven by climatic changes but also by new approaches to the management of the natural environment, increasing the abundance of vertebrate host species and thus the potential exposure to tick bites for both humans and companion animals. In this context, a holistic approach to studying ticks’ ecology is required. In the present work, we shed light on the link between environmental tick abundance (global and specific of Ixodes ricinus nymphs, as the highest zoonotic threat) and the temporal occupancy of wildlife host species retrieved from camera traps (namely, wild ruminants, mesocarnivores and wild boar). We modelled this relationship by integrating abiotic factors relevant to tick survival, such as the vegetation cover and saturation deficit, and estimated the accuracy of prediction. To collect these data, we deployed camera traps in a peri-urban Natural Park in Northwest Italy to monitor wildlife for 1 whole year while collecting ticks in front of camera traps by dragging transects every 2 weeks. Overall, wildlife temporal occupancy showed an additive impact on tick abundance for species that are preferential hosts (deer and mesocarnivores) and a detractive impact for wild boar, which also presented a lower tick burden, particularly with regard to the tick species collected in the environment (mainly I. ricinus and Haemaphysalis punctata). Accuracy of prediction was higher for I. ricinus nymphs rather than the global model. Temporal fluctuations in the tick population were also highlighted. Wildlife temporal occupancy was not constant and varied between seasons according to feeding habits. In conclusion, we highlighted the utility of camera trap data to investigate tick ecology and acarological risk. This information is crucial in informing monitoring and prevention strategies to decrease the risk of tick bites in humans and thus zoonotic risk of tick-borne diseases.
期刊介绍:
Transboundary and Emerging Diseases brings together in one place the latest research on infectious diseases considered to hold the greatest economic threat to animals and humans worldwide. The journal provides a venue for global research on their diagnosis, prevention and management, and for papers on public health, pathogenesis, epidemiology, statistical modeling, diagnostics, biosecurity issues, genomics, vaccine development and rapid communication of new outbreaks. Papers should include timely research approaches using state-of-the-art technologies. The editors encourage papers adopting a science-based approach on socio-economic and environmental factors influencing the management of the bio-security threat posed by these diseases, including risk analysis and disease spread modeling. Preference will be given to communications focusing on novel science-based approaches to controlling transboundary and emerging diseases. The following topics are generally considered out-of-scope, but decisions are made on a case-by-case basis (for example, studies on cryptic wildlife populations, and those on potential species extinctions):
Pathogen discovery: a common pathogen newly recognised in a specific country, or a new pathogen or genetic sequence for which there is little context about — or insights regarding — its emergence or spread.
Prevalence estimation surveys and risk factor studies based on survey (rather than longitudinal) methodology, except when such studies are unique. Surveys of knowledge, attitudes and practices are within scope.
Diagnostic test development if not accompanied by robust sensitivity and specificity estimation from field studies.
Studies focused only on laboratory methods in which relevance to disease emergence and spread is not obvious or can not be inferred (“pure research” type studies).
Narrative literature reviews which do not generate new knowledge. Systematic and scoping reviews, and meta-analyses are within scope.