粘度、热传导率和 Soret-Dufour 效应的变化对经过非稳定渗透性可膨胀薄片的反应性薄液膜的 MHD 辐射传热的影响

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-05-27 DOI:10.1002/htj.23096
Dulal Pal, Prasenjit Saha
{"title":"粘度、热传导率和 Soret-Dufour 效应的变化对经过非稳定渗透性可膨胀薄片的反应性薄液膜的 MHD 辐射传热的影响","authors":"Dulal Pal,&nbsp;Prasenjit Saha","doi":"10.1002/htj.23096","DOIUrl":null,"url":null,"abstract":"<p>Significance of magnetohydrodynamic effect on a viscous (temperature-dependent) and chemically reactive thin fluid film flow past an unsteady permeable stretchable plate with Soret–Dufour effects, nonlinear thermal radiative, and suction under the action of a convective type of boundary condition is analyzed. The problem consists of nonlinear governing basic equations that are highly nonlinear due to the existence of nonlinear thermal radiative terms in the energy equation. Analytical solutions are challenging to achieve for such types of problems, so a numerical scheme adopts the numerical solution. Computed solutions indicate that decreasing the Dufour number (and simultaneously increasing the Soret number) enhances heat flux, whereas the reverse trend is estimated for the concentration gradient field. The influence of magnetization indicates a decrement in the thin liquid film velocity distribution, whereas an increment is observed in temperature and solutal gradient profiles. Further, an enhancement in thermoradiative values focuses on decreasing the heat flux profiles, whereas a decreasing trend is determined in the solutal gradient by incrementing the Schmidt number. The variations of the velocity field, temperature, and concentration gradients are shown for the unsteady parameter <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>S</mi>\n </mrow>\n </mrow>\n <annotation> $S$</annotation>\n </semantics></math> lying in the range [0.8, 1.4]. Similarly, the range of different parameters utilized are <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>θ</mi>\n \n <mi>r</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${\\theta }_{r}$</annotation>\n </semantics></math> [0.0, 1.0], <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>N</mi>\n \n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> $Nr$</annotation>\n </semantics></math> [0.0, 2.0], <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>P</mi>\n \n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> $Pr$</annotation>\n </semantics></math> [0.8, 1.5], <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>S</mi>\n \n <mi>c</mi>\n </mrow>\n </mrow>\n <annotation> $Sc$</annotation>\n </semantics></math> [0.5, 2.0], <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msup>\n <mi>B</mi>\n \n <mo>*</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${B}^{* }$</annotation>\n </semantics></math> [0.0, 1.0], <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>k</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${k}_{1}$</annotation>\n </semantics></math> [0.2, 3.0], <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>w</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${f}_{w}$</annotation>\n </semantics></math> [1.0, 2.0], <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>M</mi>\n </mrow>\n </mrow>\n <annotation> $M$</annotation>\n </semantics></math> [0.0, 3.0], <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>D</mi>\n \n <mi>u</mi>\n </mrow>\n </mrow>\n <annotation> $Du$</annotation>\n </semantics></math> [0.4, 1.0], and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>S</mi>\n \n <mi>r</mi>\n </mrow>\n </mrow>\n <annotation> $Sr$</annotation>\n </semantics></math> [0.4, 1.0]. The novelty of the present study lies in its analysis of complex fluid dynamics phenomena and their implications for various industrial processes and engineering applications, including coating processes, heat exchangers, microfluidics, and biomedical engineering. The insights gained from the study can contribute to developing more efficient and innovative research in these areas. Further, we have compared the present results with those available in the literature under some special cases and found them to be in excellent agreement.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 7","pages":"3432-3459"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of variable viscosity, thermal conductivity, and Soret–Dufour effects on MHD radiative heat transfer in thin reactive liquid films past an unsteady permeable expandable sheet\",\"authors\":\"Dulal Pal,&nbsp;Prasenjit Saha\",\"doi\":\"10.1002/htj.23096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Significance of magnetohydrodynamic effect on a viscous (temperature-dependent) and chemically reactive thin fluid film flow past an unsteady permeable stretchable plate with Soret–Dufour effects, nonlinear thermal radiative, and suction under the action of a convective type of boundary condition is analyzed. The problem consists of nonlinear governing basic equations that are highly nonlinear due to the existence of nonlinear thermal radiative terms in the energy equation. Analytical solutions are challenging to achieve for such types of problems, so a numerical scheme adopts the numerical solution. Computed solutions indicate that decreasing the Dufour number (and simultaneously increasing the Soret number) enhances heat flux, whereas the reverse trend is estimated for the concentration gradient field. The influence of magnetization indicates a decrement in the thin liquid film velocity distribution, whereas an increment is observed in temperature and solutal gradient profiles. Further, an enhancement in thermoradiative values focuses on decreasing the heat flux profiles, whereas a decreasing trend is determined in the solutal gradient by incrementing the Schmidt number. The variations of the velocity field, temperature, and concentration gradients are shown for the unsteady parameter <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mrow>\\n <annotation> $S$</annotation>\\n </semantics></math> lying in the range [0.8, 1.4]. Similarly, the range of different parameters utilized are <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>θ</mi>\\n \\n <mi>r</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\theta }_{r}$</annotation>\\n </semantics></math> [0.0, 1.0], <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>N</mi>\\n \\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n <annotation> $Nr$</annotation>\\n </semantics></math> [0.0, 2.0], <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>P</mi>\\n \\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n <annotation> $Pr$</annotation>\\n </semantics></math> [0.8, 1.5], <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>S</mi>\\n \\n <mi>c</mi>\\n </mrow>\\n </mrow>\\n <annotation> $Sc$</annotation>\\n </semantics></math> [0.5, 2.0], <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msup>\\n <mi>B</mi>\\n \\n <mo>*</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> ${B}^{* }$</annotation>\\n </semantics></math> [0.0, 1.0], <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>k</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${k}_{1}$</annotation>\\n </semantics></math> [0.2, 3.0], <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>w</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${f}_{w}$</annotation>\\n </semantics></math> [1.0, 2.0], <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>M</mi>\\n </mrow>\\n </mrow>\\n <annotation> $M$</annotation>\\n </semantics></math> [0.0, 3.0], <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>D</mi>\\n \\n <mi>u</mi>\\n </mrow>\\n </mrow>\\n <annotation> $Du$</annotation>\\n </semantics></math> [0.4, 1.0], and <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>S</mi>\\n \\n <mi>r</mi>\\n </mrow>\\n </mrow>\\n <annotation> $Sr$</annotation>\\n </semantics></math> [0.4, 1.0]. The novelty of the present study lies in its analysis of complex fluid dynamics phenomena and their implications for various industrial processes and engineering applications, including coating processes, heat exchangers, microfluidics, and biomedical engineering. The insights gained from the study can contribute to developing more efficient and innovative research in these areas. Further, we have compared the present results with those available in the literature under some special cases and found them to be in excellent agreement.</p>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":\"53 7\",\"pages\":\"3432-3459\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.23096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

在对流型边界条件的作用下,分析了磁流体动力学效应对流经具有 Soret-Dufour 效应、非线性热辐射和吸力的非稳定渗透可拉伸板的粘性(温度相关)和化学反应性薄膜流体流动的影响。由于能量方程中存在非线性热辐射项,该问题由高度非线性的非线性控制基本方程组成。对于这类问题,分析求解具有挑战性,因此采用了数值求解方案。计算解表明,减小杜富尔数(同时增大索雷特数)会增强热通量,而浓度梯度场的估计趋势则相反。磁化的影响表明,薄液膜速度分布减小,而温度和溶质梯度分布增大。此外,热辐射值的增加会导致热通量曲线的减小,而通过增加施密特数则可确定溶质梯度的减小趋势。图中显示了非稳态参数 S $S$ 在 [0.8, 1.4] 范围内的速度场、温度和浓度梯度的变化。同样,使用的不同参数范围为:θ r ${theta }_{r}$ [0.0, 1.0]、N r $Nr$ [0.0, 2.0]、P r $Pr$ [0.8, 1.5]、S c $Sc$ [0.5, 2.0]、B * ${B}^{* }$ [0.0, 1.0]、k 1 ${k}_{1}$ [0.2, 3.0]、f w ${f}_{w}$ [1.0, 2.0]、M $M$ [0.0, 3.0]、D u $Du$ [0.4, 1.0]和 S r $Sr$ [0.4, 1.0]。本研究的新颖之处在于分析了复杂的流体动力学现象及其对各种工业流程和工程应用的影响,包括涂层工艺、热交换器、微流体技术和生物医学工程。从研究中获得的见解有助于在这些领域开展更高效、更创新的研究。此外,我们还在一些特殊情况下将目前的结果与文献中的结果进行了比较,发现它们非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of variable viscosity, thermal conductivity, and Soret–Dufour effects on MHD radiative heat transfer in thin reactive liquid films past an unsteady permeable expandable sheet

Significance of magnetohydrodynamic effect on a viscous (temperature-dependent) and chemically reactive thin fluid film flow past an unsteady permeable stretchable plate with Soret–Dufour effects, nonlinear thermal radiative, and suction under the action of a convective type of boundary condition is analyzed. The problem consists of nonlinear governing basic equations that are highly nonlinear due to the existence of nonlinear thermal radiative terms in the energy equation. Analytical solutions are challenging to achieve for such types of problems, so a numerical scheme adopts the numerical solution. Computed solutions indicate that decreasing the Dufour number (and simultaneously increasing the Soret number) enhances heat flux, whereas the reverse trend is estimated for the concentration gradient field. The influence of magnetization indicates a decrement in the thin liquid film velocity distribution, whereas an increment is observed in temperature and solutal gradient profiles. Further, an enhancement in thermoradiative values focuses on decreasing the heat flux profiles, whereas a decreasing trend is determined in the solutal gradient by incrementing the Schmidt number. The variations of the velocity field, temperature, and concentration gradients are shown for the unsteady parameter S $S$ lying in the range [0.8, 1.4]. Similarly, the range of different parameters utilized are θ r ${\theta }_{r}$ [0.0, 1.0], N r $Nr$ [0.0, 2.0], P r $Pr$ [0.8, 1.5], S c $Sc$ [0.5, 2.0], B * ${B}^{* }$ [0.0, 1.0], k 1 ${k}_{1}$ [0.2, 3.0], f w ${f}_{w}$ [1.0, 2.0], M $M$ [0.0, 3.0], D u $Du$ [0.4, 1.0], and S r $Sr$ [0.4, 1.0]. The novelty of the present study lies in its analysis of complex fluid dynamics phenomena and their implications for various industrial processes and engineering applications, including coating processes, heat exchangers, microfluidics, and biomedical engineering. The insights gained from the study can contribute to developing more efficient and innovative research in these areas. Further, we have compared the present results with those available in the literature under some special cases and found them to be in excellent agreement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信