通过加速氙气固化氧化锌层提高倒置聚合物太阳能电池的稳定性

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chih-Chien Lee , Pei-Chun Ku , Kasimayan Uma , Hui-Chieh Lin , Ssu-Yung Chung , Shun-Wei Liu
{"title":"通过加速氙气固化氧化锌层提高倒置聚合物太阳能电池的稳定性","authors":"Chih-Chien Lee ,&nbsp;Pei-Chun Ku ,&nbsp;Kasimayan Uma ,&nbsp;Hui-Chieh Lin ,&nbsp;Ssu-Yung Chung ,&nbsp;Shun-Wei Liu","doi":"10.1016/j.orgel.2024.107146","DOIUrl":null,"url":null,"abstract":"<div><div>This study delves into the profound implications of employing an intensive xenon lamp treatment with a rapid curing method completed within 4 min, to fabricate a ZnO layer. Subsequently, we applied a coating of PM6:Y6 as the active layer and utilized MoO<sub>3</sub>/Ag as the contact electrode, aiming to advance the efficiency of polymer solar cells (PSCs) through entirely room-temperature processes. Our investigation juxtaposes this xenon lamp treatment with the conventional hot plate method for annealing the ZnO layer, conducted at 180 °C for both 20 min and 4 min. Remarkably, our proposed xenon lamp treatment process not only promotes charge transfer but also exhibits enhancements of the lattice oxygen in the Zn-O layer. This innovative methodology of xenon treatment yields a notable increase in power conversion efficiency (PCE), achieving 14.55 %, compared to 13.71 % and 12.44 % for the ZnO layers annealed with a hot plate for 20 min and 4 min, respectively. Moreover, devices subjected to the 4-min xenon lamp treatment maintained 85 % (T<sub>85</sub>) of their original Power Conversion Efficiency (PCE) after enduring 500 h of one-sun aging measurement. These findings evoke optimism regarding the xenon treatment's potential to streamline the fabrication process, and provide a promising avenue for mitigating interface degradation while enhancing the stability of PSCs.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"135 ","pages":"Article 107146"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing stability in inverted polymer solar cells through accelerated xenon curing of the ZnO layer\",\"authors\":\"Chih-Chien Lee ,&nbsp;Pei-Chun Ku ,&nbsp;Kasimayan Uma ,&nbsp;Hui-Chieh Lin ,&nbsp;Ssu-Yung Chung ,&nbsp;Shun-Wei Liu\",\"doi\":\"10.1016/j.orgel.2024.107146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study delves into the profound implications of employing an intensive xenon lamp treatment with a rapid curing method completed within 4 min, to fabricate a ZnO layer. Subsequently, we applied a coating of PM6:Y6 as the active layer and utilized MoO<sub>3</sub>/Ag as the contact electrode, aiming to advance the efficiency of polymer solar cells (PSCs) through entirely room-temperature processes. Our investigation juxtaposes this xenon lamp treatment with the conventional hot plate method for annealing the ZnO layer, conducted at 180 °C for both 20 min and 4 min. Remarkably, our proposed xenon lamp treatment process not only promotes charge transfer but also exhibits enhancements of the lattice oxygen in the Zn-O layer. This innovative methodology of xenon treatment yields a notable increase in power conversion efficiency (PCE), achieving 14.55 %, compared to 13.71 % and 12.44 % for the ZnO layers annealed with a hot plate for 20 min and 4 min, respectively. Moreover, devices subjected to the 4-min xenon lamp treatment maintained 85 % (T<sub>85</sub>) of their original Power Conversion Efficiency (PCE) after enduring 500 h of one-sun aging measurement. These findings evoke optimism regarding the xenon treatment's potential to streamline the fabrication process, and provide a promising avenue for mitigating interface degradation while enhancing the stability of PSCs.</div></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":\"135 \",\"pages\":\"Article 107146\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566119924001575\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001575","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究深入探讨了采用氙灯强化处理和 4 分钟内完成快速固化的方法来制造氧化锌层的深远意义。随后,我们涂上一层 PM6:Y6 作为活性层,并使用 MoO3/Ag 作为接触电极,旨在通过完全室温工艺提高聚合物太阳能电池(PSC)的效率。我们的研究将这种氙灯处理方法与传统的热板退火方法并列,分别在 180 °C 下进行 20 分钟和 4 分钟的氧化锌层退火。值得注意的是,我们提出的氙灯处理工艺不仅能促进电荷转移,还能增强氧化锌层中的晶格氧。这种创新的氙灯处理方法显著提高了功率转换效率(PCE),达到 14.55%,而用热板退火 20 分钟和 4 分钟的氧化锌层分别为 13.71% 和 12.44%。此外,经过 4 分钟氙灯处理的器件在经受 500 小时的单太阳老化测量后,其功率转换效率(PCE)仍保持在原来的 85% (T85)。这些发现使人们对氙灯处理简化制造工艺的潜力产生了乐观的预期,并为在增强 PSCs 稳定性的同时减轻接口退化提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancing stability in inverted polymer solar cells through accelerated xenon curing of the ZnO layer

Advancing stability in inverted polymer solar cells through accelerated xenon curing of the ZnO layer
This study delves into the profound implications of employing an intensive xenon lamp treatment with a rapid curing method completed within 4 min, to fabricate a ZnO layer. Subsequently, we applied a coating of PM6:Y6 as the active layer and utilized MoO3/Ag as the contact electrode, aiming to advance the efficiency of polymer solar cells (PSCs) through entirely room-temperature processes. Our investigation juxtaposes this xenon lamp treatment with the conventional hot plate method for annealing the ZnO layer, conducted at 180 °C for both 20 min and 4 min. Remarkably, our proposed xenon lamp treatment process not only promotes charge transfer but also exhibits enhancements of the lattice oxygen in the Zn-O layer. This innovative methodology of xenon treatment yields a notable increase in power conversion efficiency (PCE), achieving 14.55 %, compared to 13.71 % and 12.44 % for the ZnO layers annealed with a hot plate for 20 min and 4 min, respectively. Moreover, devices subjected to the 4-min xenon lamp treatment maintained 85 % (T85) of their original Power Conversion Efficiency (PCE) after enduring 500 h of one-sun aging measurement. These findings evoke optimism regarding the xenon treatment's potential to streamline the fabrication process, and provide a promising avenue for mitigating interface degradation while enhancing the stability of PSCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信