基于苯并噻二唑的新型供体材料的协同电荷转移动力学可提高功率转换效率:从结构工程到非富勒烯有机太阳能电池的效率评估

IF 3.2 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
{"title":"基于苯并噻二唑的新型供体材料的协同电荷转移动力学可提高功率转换效率:从结构工程到非富勒烯有机太阳能电池的效率评估","authors":"","doi":"10.1016/j.jics.2024.101418","DOIUrl":null,"url":null,"abstract":"<div><div>In the realm of organic solar cell technology, current research is dedicated to enhancing the photovoltaic properties of donor-π-acceptor (D-π-A) materials to achieve higher power conversion efficiencies (PCE). This optimization focuses particularly on fine-tuning the conduction band and electrolytic characteristics to maximize performance. Addressing the growing demand for novel materials with enhanced optoelectronic properties in organic photovoltaic research, our proposed compound BT05, one of nine new benzothiadiazole-based D-π-A donor molecules (BT01-BT09), exhibits a power conversion efficiency (PCE) of 25 %, surpassing the 18 % PCE of the reference compound BTD-OMe. TD-DFT and DFT simulations illuminate how donor modifications enhance the photovoltaic characteristics of the proposed molecules. Higher open-circuit voltage (V<sub>OC</sub>) of 1.74–2.26 V, increase in binding energy (∼1.997), <em>λ</em><sub>max</sub> (470–476 nm), reduction in energy gap (4.25–4.65 eV), also validates the PCE results and confirm the usefulness of designed molecules (BT01-BT09). Moreover, D<sub>HOMO</sub> and A<sub>LUMO,</sub> TDM, reorganization energy <em>λ</em><sub>e</sub> (0.0124–0.0134) and <em>λ</em><sub>h</sub> (0.0094–0.0098), and NPA results also confirm that BT01-BT09 molecules unlock the organic solar cell's potential and advance sustainable energy solutions through innovative technology. Among all developed compounds, BT05 displays higher V<sub>OC</sub> (2.26 V), 87 % fill-factor, and 25 % PCE; hence, it is recommended in future solar cell applications.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic charge-transfer dynamics of novel benzothiadiazole-based donor materials for higher power conversion efficiency: From structural engineering to efficiency assessment in non-fullerene organic solar cells\",\"authors\":\"\",\"doi\":\"10.1016/j.jics.2024.101418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the realm of organic solar cell technology, current research is dedicated to enhancing the photovoltaic properties of donor-π-acceptor (D-π-A) materials to achieve higher power conversion efficiencies (PCE). This optimization focuses particularly on fine-tuning the conduction band and electrolytic characteristics to maximize performance. Addressing the growing demand for novel materials with enhanced optoelectronic properties in organic photovoltaic research, our proposed compound BT05, one of nine new benzothiadiazole-based D-π-A donor molecules (BT01-BT09), exhibits a power conversion efficiency (PCE) of 25 %, surpassing the 18 % PCE of the reference compound BTD-OMe. TD-DFT and DFT simulations illuminate how donor modifications enhance the photovoltaic characteristics of the proposed molecules. Higher open-circuit voltage (V<sub>OC</sub>) of 1.74–2.26 V, increase in binding energy (∼1.997), <em>λ</em><sub>max</sub> (470–476 nm), reduction in energy gap (4.25–4.65 eV), also validates the PCE results and confirm the usefulness of designed molecules (BT01-BT09). Moreover, D<sub>HOMO</sub> and A<sub>LUMO,</sub> TDM, reorganization energy <em>λ</em><sub>e</sub> (0.0124–0.0134) and <em>λ</em><sub>h</sub> (0.0094–0.0098), and NPA results also confirm that BT01-BT09 molecules unlock the organic solar cell's potential and advance sustainable energy solutions through innovative technology. Among all developed compounds, BT05 displays higher V<sub>OC</sub> (2.26 V), 87 % fill-factor, and 25 % PCE; hence, it is recommended in future solar cell applications.</div></div>\",\"PeriodicalId\":17276,\"journal\":{\"name\":\"Journal of the Indian Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001945222400298X\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001945222400298X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在有机太阳能电池技术领域,目前的研究致力于提高供体-π-受体(D-π-A)材料的光伏特性,以实现更高的功率转换效率(PCE)。这种优化尤其侧重于微调导带和电解特性,以最大限度地提高性能。为了满足有机光伏研究领域对具有增强光电特性的新型材料日益增长的需求,我们提出的化合物 BT05 是九种新的苯并噻二唑基 D-π-A 给体分子(BT01-BT09)之一,其功率转换效率(PCE)达到 25%,超过了参考化合物 BTD-OMe 的 18%。TD-DFT 和 DFT 模拟揭示了供体修饰如何增强拟议分子的光伏特性。更高的开路电压(VOC)(1.74-2.26 V)、结合能的增加(∼1.997)、λmax(470-476 nm)、能隙的减小(4.25-4.65 eV)也验证了 PCE 的结果,并证实了所设计分子 (BT01-BT09) 的实用性。此外,DHOMO 和 ALUMO、TDM、重组能 λe (0.0124-0.0134)和 λh(0.0094-0.0098)以及 NPA 结果也证实了 BT01-BT09 分子释放了有机太阳能电池的潜力,并通过创新技术推进了可持续能源解决方案。在所有已开发的化合物中,BT05 显示出更高的 VOC(2.26 V)、87 % 的填充因子和 25 % 的 PCE;因此,建议将其用于未来的太阳能电池应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic charge-transfer dynamics of novel benzothiadiazole-based donor materials for higher power conversion efficiency: From structural engineering to efficiency assessment in non-fullerene organic solar cells

Synergistic charge-transfer dynamics of novel benzothiadiazole-based donor materials for higher power conversion efficiency: From structural engineering to efficiency assessment in non-fullerene organic solar cells
In the realm of organic solar cell technology, current research is dedicated to enhancing the photovoltaic properties of donor-π-acceptor (D-π-A) materials to achieve higher power conversion efficiencies (PCE). This optimization focuses particularly on fine-tuning the conduction band and electrolytic characteristics to maximize performance. Addressing the growing demand for novel materials with enhanced optoelectronic properties in organic photovoltaic research, our proposed compound BT05, one of nine new benzothiadiazole-based D-π-A donor molecules (BT01-BT09), exhibits a power conversion efficiency (PCE) of 25 %, surpassing the 18 % PCE of the reference compound BTD-OMe. TD-DFT and DFT simulations illuminate how donor modifications enhance the photovoltaic characteristics of the proposed molecules. Higher open-circuit voltage (VOC) of 1.74–2.26 V, increase in binding energy (∼1.997), λmax (470–476 nm), reduction in energy gap (4.25–4.65 eV), also validates the PCE results and confirm the usefulness of designed molecules (BT01-BT09). Moreover, DHOMO and ALUMO, TDM, reorganization energy λe (0.0124–0.0134) and λh (0.0094–0.0098), and NPA results also confirm that BT01-BT09 molecules unlock the organic solar cell's potential and advance sustainable energy solutions through innovative technology. Among all developed compounds, BT05 displays higher VOC (2.26 V), 87 % fill-factor, and 25 % PCE; hence, it is recommended in future solar cell applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
7.70%
发文量
492
审稿时长
3-8 weeks
期刊介绍: The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信