{"title":"通过应用响应面方法与中心复合设计,优化纳米填料成分以提高环氧基复合材料的热机械性能","authors":"","doi":"10.1016/j.jics.2024.101417","DOIUrl":null,"url":null,"abstract":"<div><div>An epoxy based composite of modified halloysite nanotubes (A) and modified fly ash (B) with improved thermo mechanical and morphological properties has been successfully fabricated. The primary objective of this study is to analyze the factors (composition of A and B) that significantly affect the properties of nanocomposites and to find out the best optimize values of these factors using Response Surface Methodology (RSM) with Central Composite Design(CCD). The enhancement of 80 percent in the tensile strength, nearly 240 percent of flexural strength, and nearly 166 percent in impact strength has been achieved at the optimal composition of A and B. The scanning electron microscopy (SEM) analysis in the present study highlight the importance of achieving proper dispersion and interaction with the polymer matrix in order to address issues like HNT aggregation. The efficient dispersion of A (3 wt%) and B (6 wt%) in the polymer is confirmed by SEM studies. In addition the TGA graph shows good thermal stability at 340 °C.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of nanofiller compositions for enhancing thermo-mechanical properties of epoxy-based composites through the application of response surface methodology with central composite design\",\"authors\":\"\",\"doi\":\"10.1016/j.jics.2024.101417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An epoxy based composite of modified halloysite nanotubes (A) and modified fly ash (B) with improved thermo mechanical and morphological properties has been successfully fabricated. The primary objective of this study is to analyze the factors (composition of A and B) that significantly affect the properties of nanocomposites and to find out the best optimize values of these factors using Response Surface Methodology (RSM) with Central Composite Design(CCD). The enhancement of 80 percent in the tensile strength, nearly 240 percent of flexural strength, and nearly 166 percent in impact strength has been achieved at the optimal composition of A and B. The scanning electron microscopy (SEM) analysis in the present study highlight the importance of achieving proper dispersion and interaction with the polymer matrix in order to address issues like HNT aggregation. The efficient dispersion of A (3 wt%) and B (6 wt%) in the polymer is confirmed by SEM studies. In addition the TGA graph shows good thermal stability at 340 °C.</div></div>\",\"PeriodicalId\":17276,\"journal\":{\"name\":\"Journal of the Indian Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019452224002978\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019452224002978","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
成功制备了一种基于环氧树脂的改性海泡石纳米管(A)和改性粉煤灰(B)复合材料,该复合材料具有更好的热机械性能和形态学性能。本研究的主要目的是分析对纳米复合材料性能有显著影响的因素(A 和 B 的组成),并利用响应面方法(RSM)和中央复合设计(CCD)找出这些因素的最佳优化值。本研究中的扫描电子显微镜(SEM)分析强调了实现适当分散以及与聚合物基质相互作用的重要性,以解决 HNT 聚集等问题。扫描电子显微镜研究证实了 A(3 wt%)和 B(6 wt%)在聚合物中的有效分散。此外,TGA 曲线图显示在 340 °C 下具有良好的热稳定性。
Optimization of nanofiller compositions for enhancing thermo-mechanical properties of epoxy-based composites through the application of response surface methodology with central composite design
An epoxy based composite of modified halloysite nanotubes (A) and modified fly ash (B) with improved thermo mechanical and morphological properties has been successfully fabricated. The primary objective of this study is to analyze the factors (composition of A and B) that significantly affect the properties of nanocomposites and to find out the best optimize values of these factors using Response Surface Methodology (RSM) with Central Composite Design(CCD). The enhancement of 80 percent in the tensile strength, nearly 240 percent of flexural strength, and nearly 166 percent in impact strength has been achieved at the optimal composition of A and B. The scanning electron microscopy (SEM) analysis in the present study highlight the importance of achieving proper dispersion and interaction with the polymer matrix in order to address issues like HNT aggregation. The efficient dispersion of A (3 wt%) and B (6 wt%) in the polymer is confirmed by SEM studies. In addition the TGA graph shows good thermal stability at 340 °C.
期刊介绍:
The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.