Bibek Saha , Gourav Shil , Animesh Debnath , Biswajit Saha
{"title":"使用聚吡咯封装氧化锆去除维多利亚蓝染料的工艺优化:机理途径和经济评估","authors":"Bibek Saha , Gourav Shil , Animesh Debnath , Biswajit Saha","doi":"10.1016/j.jics.2024.101407","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, an organometallic composite, namely a polypyrrole-encapsulated zirconium oxide (ZrO<sub>2</sub>/PPy) nanocomposite, was developed and used to eliminate Victoria blue dye (VB) from water system. Specific surface area of the ZrO<sub>2</sub>/PPy obtained from BET study was observed to be 61.822 m<sup>2</sup>/g. Solution pH of 7.0, ZrO<sub>2</sub>/PPy nanocomposite dose of 0.8 g/L, sonication period of 40 min and initial VB dye concentration of 50 mg/L were chosen as optimal test parameters, at which 86.23 (±1.15) % of VB dye elimination was observed. The VB dye uptake process follows pseudo-second-order kinetic model and Langmuir isotherm model, with the later providing the maximum VB dye adsorption capacity of ZrO<sub>2</sub>/PPy nanocomposite as 238.09 mg/g. Thermodynamics study suggests the spontaneous (ΔG<sup>o</sup>< 0) and endothermic (ΔH<sup>o</sup>> 0) nature of the adsorption study. Food processing wastewater causes maximum hindrance (∼20 (±0.90) % −25 (±1.03) %) in the VB dye uptake process while the presence of phosphate (PO<sub>4</sub><sup>3−</sup>) ions can create highest interference (∼17 (±0.93) % −19 (±1.08) %) in the VB dye uptake process. At the optimum test parameter values (adsorbent dose: 1.3 g/L, initial VB dye concentration: 20 mg/L, sonication period: 70 min) as suggested by response surface methodology (RSM), maximum VB dye elimination of ∼96 % was observed. Electrostatic attraction, π–π interaction and hydrogen bond formation are amongst the major uptake mechanisms. Regeneration study indicates ∼19 (±1.36) % of decrease in VB dye elimination (%) after fifth cycle of reuse. The lab scale and industrial scale fabrication expense of 1.0 kg of ZrO<sub>2</sub>/PPy nanocomposite were obtained as 75.74 and 22.20 USD, respectively. The findings of this study suggest the potential of ZrO<sub>2</sub>/PPy nanocomposite as an effective and economically viable adsorbent to eliminate VB dye from wastewater.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101407"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process optimization of victoria blue dye removal using polypyrrole-encapsulated zirconium oxide: Mechanistic pathway and economic assessment\",\"authors\":\"Bibek Saha , Gourav Shil , Animesh Debnath , Biswajit Saha\",\"doi\":\"10.1016/j.jics.2024.101407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, an organometallic composite, namely a polypyrrole-encapsulated zirconium oxide (ZrO<sub>2</sub>/PPy) nanocomposite, was developed and used to eliminate Victoria blue dye (VB) from water system. Specific surface area of the ZrO<sub>2</sub>/PPy obtained from BET study was observed to be 61.822 m<sup>2</sup>/g. Solution pH of 7.0, ZrO<sub>2</sub>/PPy nanocomposite dose of 0.8 g/L, sonication period of 40 min and initial VB dye concentration of 50 mg/L were chosen as optimal test parameters, at which 86.23 (±1.15) % of VB dye elimination was observed. The VB dye uptake process follows pseudo-second-order kinetic model and Langmuir isotherm model, with the later providing the maximum VB dye adsorption capacity of ZrO<sub>2</sub>/PPy nanocomposite as 238.09 mg/g. Thermodynamics study suggests the spontaneous (ΔG<sup>o</sup>< 0) and endothermic (ΔH<sup>o</sup>> 0) nature of the adsorption study. Food processing wastewater causes maximum hindrance (∼20 (±0.90) % −25 (±1.03) %) in the VB dye uptake process while the presence of phosphate (PO<sub>4</sub><sup>3−</sup>) ions can create highest interference (∼17 (±0.93) % −19 (±1.08) %) in the VB dye uptake process. At the optimum test parameter values (adsorbent dose: 1.3 g/L, initial VB dye concentration: 20 mg/L, sonication period: 70 min) as suggested by response surface methodology (RSM), maximum VB dye elimination of ∼96 % was observed. Electrostatic attraction, π–π interaction and hydrogen bond formation are amongst the major uptake mechanisms. Regeneration study indicates ∼19 (±1.36) % of decrease in VB dye elimination (%) after fifth cycle of reuse. The lab scale and industrial scale fabrication expense of 1.0 kg of ZrO<sub>2</sub>/PPy nanocomposite were obtained as 75.74 and 22.20 USD, respectively. The findings of this study suggest the potential of ZrO<sub>2</sub>/PPy nanocomposite as an effective and economically viable adsorbent to eliminate VB dye from wastewater.</div></div>\",\"PeriodicalId\":17276,\"journal\":{\"name\":\"Journal of the Indian Chemical Society\",\"volume\":\"101 11\",\"pages\":\"Article 101407\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019452224002875\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019452224002875","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Process optimization of victoria blue dye removal using polypyrrole-encapsulated zirconium oxide: Mechanistic pathway and economic assessment
In this study, an organometallic composite, namely a polypyrrole-encapsulated zirconium oxide (ZrO2/PPy) nanocomposite, was developed and used to eliminate Victoria blue dye (VB) from water system. Specific surface area of the ZrO2/PPy obtained from BET study was observed to be 61.822 m2/g. Solution pH of 7.0, ZrO2/PPy nanocomposite dose of 0.8 g/L, sonication period of 40 min and initial VB dye concentration of 50 mg/L were chosen as optimal test parameters, at which 86.23 (±1.15) % of VB dye elimination was observed. The VB dye uptake process follows pseudo-second-order kinetic model and Langmuir isotherm model, with the later providing the maximum VB dye adsorption capacity of ZrO2/PPy nanocomposite as 238.09 mg/g. Thermodynamics study suggests the spontaneous (ΔGo< 0) and endothermic (ΔHo> 0) nature of the adsorption study. Food processing wastewater causes maximum hindrance (∼20 (±0.90) % −25 (±1.03) %) in the VB dye uptake process while the presence of phosphate (PO43−) ions can create highest interference (∼17 (±0.93) % −19 (±1.08) %) in the VB dye uptake process. At the optimum test parameter values (adsorbent dose: 1.3 g/L, initial VB dye concentration: 20 mg/L, sonication period: 70 min) as suggested by response surface methodology (RSM), maximum VB dye elimination of ∼96 % was observed. Electrostatic attraction, π–π interaction and hydrogen bond formation are amongst the major uptake mechanisms. Regeneration study indicates ∼19 (±1.36) % of decrease in VB dye elimination (%) after fifth cycle of reuse. The lab scale and industrial scale fabrication expense of 1.0 kg of ZrO2/PPy nanocomposite were obtained as 75.74 and 22.20 USD, respectively. The findings of this study suggest the potential of ZrO2/PPy nanocomposite as an effective and economically viable adsorbent to eliminate VB dye from wastewater.
期刊介绍:
The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.