孔隙形态、重力和流体特性对水淹过程影响的 CFD 分析

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL
{"title":"孔隙形态、重力和流体特性对水淹过程影响的 CFD 分析","authors":"","doi":"10.1016/j.cherd.2024.09.036","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, computational fluid dynamics (CFD) was employed to examine the two-phase flow of water and oil in a porous medium. For this purpose, the Navier-Stockes equations, which describe fluid motion, and the Cahn-Hillard phase field, which defines the interface between two phases, are coupled. The numerical discretization system of equations was solved using the finite element method (FEM) with the COMSOL software. To validate the results and the phase-field model (PFM), the Lucas and Washburn equation was used together with the experimental data. Through this study, the effective parameters were evaluated in two parts. In the first part, seven models with different pore morphologies were designed, and the impact of petrophysical parameters of the reservoir, including the shape of pores, connectivity of pores with or without throat lines, porous media heterogeneity, and relative permeability, on oil recovery was investigated. The second part was devoted to performing sensitivity analysis on the effect of fluid properties, including interfacial tension, wettability, viscosity ratio, injected fluid flow, and gravity, upon enhanced oil recovery (EOR) in different morphologies. Owing to the uniform distribution of capillary pressure in the patterns with the throat lines, the sweep efficiency of the injected fluid was found to be better, and thereby oil production increased. The results of the present work proved the significant influence of gravity on EOR, so that by applying gravity to the solution domain, the breakthrough time and oil recovery factor increased by 20 minutes and 28.6 %, respectively. Moreover, the velocity of the injected fluid as a representative of the flow rate had the greatest effect on EOR, with a 35 % increase in production.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD analysis of pore morphology, gravity, and fluid characteristics influences on water flooding process\",\"authors\":\"\",\"doi\":\"10.1016/j.cherd.2024.09.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this research, computational fluid dynamics (CFD) was employed to examine the two-phase flow of water and oil in a porous medium. For this purpose, the Navier-Stockes equations, which describe fluid motion, and the Cahn-Hillard phase field, which defines the interface between two phases, are coupled. The numerical discretization system of equations was solved using the finite element method (FEM) with the COMSOL software. To validate the results and the phase-field model (PFM), the Lucas and Washburn equation was used together with the experimental data. Through this study, the effective parameters were evaluated in two parts. In the first part, seven models with different pore morphologies were designed, and the impact of petrophysical parameters of the reservoir, including the shape of pores, connectivity of pores with or without throat lines, porous media heterogeneity, and relative permeability, on oil recovery was investigated. The second part was devoted to performing sensitivity analysis on the effect of fluid properties, including interfacial tension, wettability, viscosity ratio, injected fluid flow, and gravity, upon enhanced oil recovery (EOR) in different morphologies. Owing to the uniform distribution of capillary pressure in the patterns with the throat lines, the sweep efficiency of the injected fluid was found to be better, and thereby oil production increased. The results of the present work proved the significant influence of gravity on EOR, so that by applying gravity to the solution domain, the breakthrough time and oil recovery factor increased by 20 minutes and 28.6 %, respectively. Moreover, the velocity of the injected fluid as a representative of the flow rate had the greatest effect on EOR, with a 35 % increase in production.</div></div>\",\"PeriodicalId\":10019,\"journal\":{\"name\":\"Chemical Engineering Research & Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research & Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263876224005689\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224005689","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用计算流体动力学(CFD)来研究多孔介质中的水油两相流。为此,将描述流体运动的 Navier-Stockes 方程和定义两相界面的 Cahn-Hillard 相场耦合在一起。使用 COMSOL 软件的有限元法 (FEM) 解决了数值离散方程系统。为了验证结果和相场模型 (PFM),使用了 Lucas 和 Washburn 方程以及实验数据。通过这项研究,有效参数分两部分进行了评估。第一部分设计了七个不同孔隙形态的模型,研究了储层岩石物理参数对采油率的影响,包括孔隙形状、孔隙连通性(有无喉线)、多孔介质异质性和相对渗透率。第二部分专门对不同形态的流体特性(包括界面张力、润湿性、粘度比、注入流体流量和重力)对提高石油采收率(EOR)的影响进行了敏感性分析。由于毛细管压力在带有喉管线的形态中分布均匀,注入流体的清扫效率更高,从而提高了石油产量。本研究的结果证明了重力对 EOR 的重要影响,在溶液域中施加重力后,突破时间和采油系数分别增加了 20 分钟和 28.6%。此外,代表流速的注入流体速度对 EOR 的影响最大,产量增加了 35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFD analysis of pore morphology, gravity, and fluid characteristics influences on water flooding process
In this research, computational fluid dynamics (CFD) was employed to examine the two-phase flow of water and oil in a porous medium. For this purpose, the Navier-Stockes equations, which describe fluid motion, and the Cahn-Hillard phase field, which defines the interface between two phases, are coupled. The numerical discretization system of equations was solved using the finite element method (FEM) with the COMSOL software. To validate the results and the phase-field model (PFM), the Lucas and Washburn equation was used together with the experimental data. Through this study, the effective parameters were evaluated in two parts. In the first part, seven models with different pore morphologies were designed, and the impact of petrophysical parameters of the reservoir, including the shape of pores, connectivity of pores with or without throat lines, porous media heterogeneity, and relative permeability, on oil recovery was investigated. The second part was devoted to performing sensitivity analysis on the effect of fluid properties, including interfacial tension, wettability, viscosity ratio, injected fluid flow, and gravity, upon enhanced oil recovery (EOR) in different morphologies. Owing to the uniform distribution of capillary pressure in the patterns with the throat lines, the sweep efficiency of the injected fluid was found to be better, and thereby oil production increased. The results of the present work proved the significant influence of gravity on EOR, so that by applying gravity to the solution domain, the breakthrough time and oil recovery factor increased by 20 minutes and 28.6 %, respectively. Moreover, the velocity of the injected fluid as a representative of the flow rate had the greatest effect on EOR, with a 35 % increase in production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信