用于同位素分离的金属掺杂无定形微孔碳:孔径调节和选择性氘吸附

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hyunlim Kim , Minji Jung , Jaewoo Park , Taeung Park , Jonghyeok Park , Hyerin Lee , Balaji G. Ghule , Ji-Hyun Jang , Raeesh Muhammad , Sandeep Kumar , Hyunchul Oh
{"title":"用于同位素分离的金属掺杂无定形微孔碳:孔径调节和选择性氘吸附","authors":"Hyunlim Kim ,&nbsp;Minji Jung ,&nbsp;Jaewoo Park ,&nbsp;Taeung Park ,&nbsp;Jonghyeok Park ,&nbsp;Hyerin Lee ,&nbsp;Balaji G. Ghule ,&nbsp;Ji-Hyun Jang ,&nbsp;Raeesh Muhammad ,&nbsp;Sandeep Kumar ,&nbsp;Hyunchul Oh","doi":"10.1016/j.carbon.2024.119674","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient hydrogen isotope separation is crucial for applications in energy production and advanced scientific research, but separation of these poses significant challenges. In this study, we developed amorphous microporous carbon (AMC) derived from a zeolite template and explored hydrogen isotope separation using quantum sieving. Thermal desorption spectroscopy (TDS) technique was used to evaluate the selectivity of hydrogen (H<sub>2</sub>) and deuterium (D<sub>2</sub>) isotope separation. The doping of metal ions, such as Ca<sup>2</sup>⁺, Mg<sup>2</sup>⁺, Ni<sup>2</sup>⁺, and Cu<sup>2</sup>⁺, in the porous carbon modulates the physicochemical properties of the pores. The metal-doped carbon samples demonstrated D<sub>2</sub> <em>vs</em> H<sub>2</sub> selectivity (S<sub>D2/H2</sub>) of over 10, compared to the pristine carbon's S<sub>D2/H2</sub> of less than 8. Density functional theory (DFT) calculation infers that pore modulation through metal doping enhanced the binding affinity of materials towards D<sub>2</sub> resulting in increased separation selectivity compared to pristine carbon samples. This approach not only boosts separation efficiency but also provides a scalable and cost-effective solution for industrial applications.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"230 ","pages":"Article 119674"},"PeriodicalIF":10.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal-doped amorphous microporous carbon for isotope separation: Pore size modulation and selective deuterium adsorption\",\"authors\":\"Hyunlim Kim ,&nbsp;Minji Jung ,&nbsp;Jaewoo Park ,&nbsp;Taeung Park ,&nbsp;Jonghyeok Park ,&nbsp;Hyerin Lee ,&nbsp;Balaji G. Ghule ,&nbsp;Ji-Hyun Jang ,&nbsp;Raeesh Muhammad ,&nbsp;Sandeep Kumar ,&nbsp;Hyunchul Oh\",\"doi\":\"10.1016/j.carbon.2024.119674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient hydrogen isotope separation is crucial for applications in energy production and advanced scientific research, but separation of these poses significant challenges. In this study, we developed amorphous microporous carbon (AMC) derived from a zeolite template and explored hydrogen isotope separation using quantum sieving. Thermal desorption spectroscopy (TDS) technique was used to evaluate the selectivity of hydrogen (H<sub>2</sub>) and deuterium (D<sub>2</sub>) isotope separation. The doping of metal ions, such as Ca<sup>2</sup>⁺, Mg<sup>2</sup>⁺, Ni<sup>2</sup>⁺, and Cu<sup>2</sup>⁺, in the porous carbon modulates the physicochemical properties of the pores. The metal-doped carbon samples demonstrated D<sub>2</sub> <em>vs</em> H<sub>2</sub> selectivity (S<sub>D2/H2</sub>) of over 10, compared to the pristine carbon's S<sub>D2/H2</sub> of less than 8. Density functional theory (DFT) calculation infers that pore modulation through metal doping enhanced the binding affinity of materials towards D<sub>2</sub> resulting in increased separation selectivity compared to pristine carbon samples. This approach not only boosts separation efficiency but also provides a scalable and cost-effective solution for industrial applications.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"230 \",\"pages\":\"Article 119674\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622324008935\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324008935","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高效的氢同位素分离对于能源生产和先进科学研究中的应用至关重要,但分离氢同位素却面临巨大挑战。在这项研究中,我们开发了源自沸石模板的无定形微孔碳(AMC),并利用量子筛分技术探索了氢同位素分离。热解吸光谱(TDS)技术用于评估氢(H2)和氘(D2)同位素分离的选择性。在多孔碳中掺入 Ca2⁺、Mg2⁺、Ni2⁺ 和 Cu2⁺等金属离子可调节孔隙的物理化学性质。密度泛函理论(DFT)计算推断,通过掺杂金属调节孔隙增强了材料与 D2 的结合亲和力,从而提高了与原始碳样品相比的分离选择性。这种方法不仅提高了分离效率,还为工业应用提供了一种可扩展且具有成本效益的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metal-doped amorphous microporous carbon for isotope separation: Pore size modulation and selective deuterium adsorption

Metal-doped amorphous microporous carbon for isotope separation: Pore size modulation and selective deuterium adsorption
Efficient hydrogen isotope separation is crucial for applications in energy production and advanced scientific research, but separation of these poses significant challenges. In this study, we developed amorphous microporous carbon (AMC) derived from a zeolite template and explored hydrogen isotope separation using quantum sieving. Thermal desorption spectroscopy (TDS) technique was used to evaluate the selectivity of hydrogen (H2) and deuterium (D2) isotope separation. The doping of metal ions, such as Ca2⁺, Mg2⁺, Ni2⁺, and Cu2⁺, in the porous carbon modulates the physicochemical properties of the pores. The metal-doped carbon samples demonstrated D2 vs H2 selectivity (SD2/H2) of over 10, compared to the pristine carbon's SD2/H2 of less than 8. Density functional theory (DFT) calculation infers that pore modulation through metal doping enhanced the binding affinity of materials towards D2 resulting in increased separation selectivity compared to pristine carbon samples. This approach not only boosts separation efficiency but also provides a scalable and cost-effective solution for industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信