Xu Zheng , Ji Zhang , Yan Li , Zhihao Zhang , Jikai Lu , Ning Mei , Zhixiang Zhang , Han Yuan
{"title":"基于液化天然气冷能利用的空分、发电、制冷和冰蓄冷一体化系统的性能分析和多目标优化","authors":"Xu Zheng , Ji Zhang , Yan Li , Zhihao Zhang , Jikai Lu , Ning Mei , Zhixiang Zhang , Han Yuan","doi":"10.1016/j.ijrefrig.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><div>Against the backdrop of escalating resource depletion and the urgent quest for alternative sources, liquefied natural gas (LNG) is increasingly gaining prominence as a sustainable solution, particularly in refrigeration applications. However, its underutilization results in wasted resources. To efficiently harness the released cold energy from LNG gasification, this study proposes an integrated system comprising air separation, power generation, refrigeration, and ice thermal storage. The system undergoes optimization using the non-dominated sorting genetic algorithm II (NSGA-II) to determine the optimal operating parameters. The optimized system is comprehensively analyzed from energy, exergy, economic, and environmental perspectives. Results show that the system, with a 70t/h LNG capacity, achieves an energy efficiency of 42.52% and an exergy efficiency of 48.09%. Economically, the system incurs a cost of approximately 0.0711 $/kWh and can mitigate over 1.4504*10<sup>7</sup>kg of CO<sub>2</sub> emissions. Compared to traditional LNG utilization systems, the integrated system demonstrates a 22.32% improvement in energy efficiency, a 7.69% enhancement in exergy efficiency, and a cost reduction of 0.0049 $/kWh. In summary, this technologically advanced and economically viable system offers a significant alternative to optimize LNG cold energy utilization.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 521-536"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis and multi-objective optimization for an integrated air separation, power generation, refrigeration and ice thermal storage system based on the LNG cold energy utilization\",\"authors\":\"Xu Zheng , Ji Zhang , Yan Li , Zhihao Zhang , Jikai Lu , Ning Mei , Zhixiang Zhang , Han Yuan\",\"doi\":\"10.1016/j.ijrefrig.2024.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Against the backdrop of escalating resource depletion and the urgent quest for alternative sources, liquefied natural gas (LNG) is increasingly gaining prominence as a sustainable solution, particularly in refrigeration applications. However, its underutilization results in wasted resources. To efficiently harness the released cold energy from LNG gasification, this study proposes an integrated system comprising air separation, power generation, refrigeration, and ice thermal storage. The system undergoes optimization using the non-dominated sorting genetic algorithm II (NSGA-II) to determine the optimal operating parameters. The optimized system is comprehensively analyzed from energy, exergy, economic, and environmental perspectives. Results show that the system, with a 70t/h LNG capacity, achieves an energy efficiency of 42.52% and an exergy efficiency of 48.09%. Economically, the system incurs a cost of approximately 0.0711 $/kWh and can mitigate over 1.4504*10<sup>7</sup>kg of CO<sub>2</sub> emissions. Compared to traditional LNG utilization systems, the integrated system demonstrates a 22.32% improvement in energy efficiency, a 7.69% enhancement in exergy efficiency, and a cost reduction of 0.0049 $/kWh. In summary, this technologically advanced and economically viable system offers a significant alternative to optimize LNG cold energy utilization.</div></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":\"168 \",\"pages\":\"Pages 521-536\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724002445\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002445","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Performance analysis and multi-objective optimization for an integrated air separation, power generation, refrigeration and ice thermal storage system based on the LNG cold energy utilization
Against the backdrop of escalating resource depletion and the urgent quest for alternative sources, liquefied natural gas (LNG) is increasingly gaining prominence as a sustainable solution, particularly in refrigeration applications. However, its underutilization results in wasted resources. To efficiently harness the released cold energy from LNG gasification, this study proposes an integrated system comprising air separation, power generation, refrigeration, and ice thermal storage. The system undergoes optimization using the non-dominated sorting genetic algorithm II (NSGA-II) to determine the optimal operating parameters. The optimized system is comprehensively analyzed from energy, exergy, economic, and environmental perspectives. Results show that the system, with a 70t/h LNG capacity, achieves an energy efficiency of 42.52% and an exergy efficiency of 48.09%. Economically, the system incurs a cost of approximately 0.0711 $/kWh and can mitigate over 1.4504*107kg of CO2 emissions. Compared to traditional LNG utilization systems, the integrated system demonstrates a 22.32% improvement in energy efficiency, a 7.69% enhancement in exergy efficiency, and a cost reduction of 0.0049 $/kWh. In summary, this technologically advanced and economically viable system offers a significant alternative to optimize LNG cold energy utilization.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.