Gabriel L. Podgaietsky , Adriano F. Ronzoni , Christian J.L. Hermes
{"title":"考虑气流系统特性的低压轴流风扇叶片模型设计方法","authors":"Gabriel L. Podgaietsky , Adriano F. Ronzoni , Christian J.L. Hermes","doi":"10.1016/j.ijrefrig.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>The paper puts forward a computer methodology for designing low-pressure axial fan blades for small-capacity refrigeration applications. Based on the blade element theory (BET), the airfoil efficiency of the airfoil, the principles of mass and momentum conservation together with empirical correlations for the flow irreversibilities, a mathematical model was devised for screening the blade geometric parameters (e.g., radial chord and pitch variation, and hub radius) by varying the induction coefficient distribution for a given fan diameter, motor speed, and airflow system characteristic curve. The best blade configuration is selected by means of a tailor-made optimization algorithm and undergoes a series of linear transformations for translating the fan parametrization into a CAD drawing. Two new fan blades were designed, one for maximum blade efficiency (MBE) and another for maximum airflow rate (MAR). In comparison with the free-swirl design approach, a standard procedure adopted in the open literature, the proposed blades showed an efficiency and an airflow by 20 % (MBE) and 14 % (MAR) higher than the reference. The airflow characteristics of the new designs were also assessed by means of wind-tunnel testing, which confirmed an increase of 11 % in the case of MBE design, while an enhancement of 10 % was observed in the case of MAR design.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model-based design approach for low-pressure axial fan blades considering the air flow system characteristics\",\"authors\":\"Gabriel L. Podgaietsky , Adriano F. Ronzoni , Christian J.L. Hermes\",\"doi\":\"10.1016/j.ijrefrig.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper puts forward a computer methodology for designing low-pressure axial fan blades for small-capacity refrigeration applications. Based on the blade element theory (BET), the airfoil efficiency of the airfoil, the principles of mass and momentum conservation together with empirical correlations for the flow irreversibilities, a mathematical model was devised for screening the blade geometric parameters (e.g., radial chord and pitch variation, and hub radius) by varying the induction coefficient distribution for a given fan diameter, motor speed, and airflow system characteristic curve. The best blade configuration is selected by means of a tailor-made optimization algorithm and undergoes a series of linear transformations for translating the fan parametrization into a CAD drawing. Two new fan blades were designed, one for maximum blade efficiency (MBE) and another for maximum airflow rate (MAR). In comparison with the free-swirl design approach, a standard procedure adopted in the open literature, the proposed blades showed an efficiency and an airflow by 20 % (MBE) and 14 % (MAR) higher than the reference. The airflow characteristics of the new designs were also assessed by means of wind-tunnel testing, which confirmed an increase of 11 % in the case of MBE design, while an enhancement of 10 % was observed in the case of MAR design.</div></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724003116\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724003116","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A model-based design approach for low-pressure axial fan blades considering the air flow system characteristics
The paper puts forward a computer methodology for designing low-pressure axial fan blades for small-capacity refrigeration applications. Based on the blade element theory (BET), the airfoil efficiency of the airfoil, the principles of mass and momentum conservation together with empirical correlations for the flow irreversibilities, a mathematical model was devised for screening the blade geometric parameters (e.g., radial chord and pitch variation, and hub radius) by varying the induction coefficient distribution for a given fan diameter, motor speed, and airflow system characteristic curve. The best blade configuration is selected by means of a tailor-made optimization algorithm and undergoes a series of linear transformations for translating the fan parametrization into a CAD drawing. Two new fan blades were designed, one for maximum blade efficiency (MBE) and another for maximum airflow rate (MAR). In comparison with the free-swirl design approach, a standard procedure adopted in the open literature, the proposed blades showed an efficiency and an airflow by 20 % (MBE) and 14 % (MAR) higher than the reference. The airflow characteristics of the new designs were also assessed by means of wind-tunnel testing, which confirmed an increase of 11 % in the case of MBE design, while an enhancement of 10 % was observed in the case of MAR design.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.